StroMAX: Partitioning-based Scheduler for
Real-time Stream Processing System

Jiawei Jiang, Zhipeng Zhang, Bin Cui, Yunhai Tong, Ning Xu

School of EECS & Key Laboratory of High Confidence Software Technologies (MOE), Peking University
{blue .Jjwjiang, zhipengzhang, bin.cui, yhtong, ning. xu}@pku .edu.cn

Abstract. With the increasing availability and scale of data from Web 2.0, the ability to efficiently and
timely analyze huge amounts of data is important for industry success. A number of real-time stream
processing platforms have been developed, such as Storm, S4, and Flume. A fundamental problem of
these large scale decentralized stream processing systems is how to deploy the workload to each node so
as to fully utilize the available resources and optimize the overall system performance. In this paper, we
present StroMAX, a graph-partitioning based approach of workload scheduling for real-time stream pro-
cessing systems. StroMAX uses two advanced generic schedulers to improve the performance of stream
processing systems by reducing the inter-node communication cost while keeping the workload of nodes
below a certain computational load threshold. The first scheduler analyzes the workload structure when
a job is committed and uses the graph-partitioning result to determine the deployment of tasks. The
second scheduler monitors system performance, analyzes the statistical information of physical nodes,
and dynamically reassigns the tasks during runtime to improve the overall performance. Besides, Stro-
MAX can be used and deployed to many other state-of-the-art real-time stream processing systems
easily. We implemented StroMAX on Storm, a representative real-time stream processing system. Ex-
tensive experiments conducted with real-world workloads and datasets demonstrate the superiority of
our approaches against the existing solutions.

Keywords: Real-time stream processing, Task allocation, Workload scheduling, Graph partition

1 Introduction

With the unprecedented proliferation of data from web, it is natural to extend the scope to efficient process-
ing mechanisms and methods that can handle real-time workloads [19]. For example, Twitter, the popular
online social network, processes over 500 million tweets every day. It is challenging to process and analyze
such a big data stream in real-time. Traditional distributed processing frameworks, such as MapReduce, are
designed for offline batch processing. They are ill-suited to process real-time workloads. Real-time stream
computing is an effective way to process big data with low-latency. It is becoming one of the fastest and
most efficient ways to obtain useful knowledge from various kinds of real-time data. Thus, many real-time
stream processing frameworks have been proposed, such as Storm [21], S4 [14], and Flume [1].

Compared to the batch processing systems, resource allocation and scheduling in real-time stream pro-
cessing systems are much more difficult and important due to the dynamic nature of the input data streams.
An application or workload in these systems consists of several processing components. A component can
produce the input of stream or execute the processing logic to generate results. In this paper, we use Spout
and Bolt, borrowed from Storm, to represent the input component and processing component, respectively.
Tuples emitted by a spout constitute a stream that can be transformed by passing through one or more bolts
that implement the user-defined logic. Therefore, we can use a directed acyclic graph, called a topology, to
denote the stream transformations. When a topology is submitted, the system schedules the tasks of each

spout and each bolt to a certain physical node of the cluster. Similar to the batch data processing systems
such as Hadoop, the allocation strategy impacts the performance of a real-time stream processing system.
However, most of the above systems apply a round-robin method as their default scheduler which evenly
distributes the components of a topology to the physical nodes. This basic scheduler is easy to implement,
however, it does not take into account the cost of tuple transmission between components. Furthermore, the
communication cost of tuple transmission heavily increases the average processing latency and deteriorates
the overall performance of the system.

In this paper, we design and implement StroMAX, which provides two novel schedulers for the real-time
stream processing systems to improve their performance. Different from the default round-robin scheduler,
StroMAX aims at reducing the average processing latency of tuple by minimizing the total inter-node com-
munication cost and keeping computational load balanced on each node. These two schedulers use graph-
partitioning based algorithms to partition the topology. The first scheduler, named Bootstrap Scheduler,
analyzes the topology graph and partitions the topology when it is submitted to the system. This strategy
is simple and is executed before the topology is started, so neither the cluster workload nor the network
traffic is taken into account. The second scheduler, named Rebalance Scheduler, goes one step further by
monitoring the runtime statistics of all the topologies and the workload of cluster, then it rebalances the
topologies for overall performance optimization when necessary. Besides, Rebalance Scheduler provides a
heuristic to dynamically move components from the bottleneck nodes to the idle ones based on the statistical
information of the cluster and the topologies.

To evaluate our schedulers, we implemented StroMAX on Storm. The performance of StroMAX is vali-
dated with several real-world workloads. The experimental results show that the proposed graph-partitioning
based approaches significantly outperform the original scheduler and demonstrate superior scalability on
both synthetic benchmarks and real-world scenarios.

Our contributions in this paper can be summarized as follows:

1. We propose Bootstrap Scheduler which analyzes the graph structure of the input topology and partitions
the topology when it is committed to the system.

2. We design Rebalance Scheduler that generates a global-topology-graph and partitions all the topologies
to the nodes so as to improve the overall performance of the system. In addition, Rebalance Scheduler
provides a novel mechanism to dynamically reassign the components when necessary.

3. We implement StroMAX on Storm, a prevailing open-source real-time stream processing system. We
conduct extensive experimental studies to exhibit the advantages of our approach.

The remaining of this paper is organized as follows. In Section 2, we review the representative real-time
systems and relevant performance issues. In Section 3, we present the Bootstrap Scheduler and Rebalance
Scheduler, followed by the architecture of StroMAX in Section 4. Section 5 reports the results of extensive
experimental studies. Finally, we introduce the related work and conclude this paper in Section 6 and 7.

2 Background

In this section, we first introduce Storm on which our prototype system is built. We next introduce the
weakness of the default scheduler and analyze the cost of inter-node and inner-node communication.
Architecture of Storm. Apache Storm [21] is an open-source distributed real-time stream computation sys-
tem. For parallelism, Storm uses two levels of abstractions: physical and logical.

— Physical: Storm consists of a master node (Nimbus), a number of zookeeper nodes that serve as a control
unit, and a set of slave physical nodes (Supervisors) which process stream workload as shown in Figure 1a.

4 9 # . :

Zookeeper Cluster > 4
Spout Bolt >y
v P>
4 @ 9 7
Supervisor Nimbus Supervisor < @ :
Storm Cluster Spout Bolt Bolt
a. Physical Abstractions. b. Topology Example.

Fig. 1: Architecture of Storm.
— Logical: As shown in Figure 1b, a Storm workload, called a topology, is a directed acyclic graph (DAG).
Each vertex represents a processing component and each edge represents data transferred between two com-
ponents. As mentioned in Section 1, there are two types of components: spout and bolt. The spouts provide a
general mechanism to emit tuples into a topology. The bolts consume tuples from spouts or other bolts, and
process them in the way defined by the user. Each component consists of a group of tasks communicating
with other groups of tasks connected to it. A task can be considered as an instance of a spout or bolt.

When a topology is committed to a Storm cluster, the tasks are assigned to the physical nodes. Conse-
quently, we need a scheduler to determine the assignment.
Scheduler in Real-time Stream Processing Systems. The default scheduler used in state-of-the-art sys-
tems is even scheduler. It enforces a round-robin strategy to balance the computation cost of each phys-
ical node, however, it lacks the consideration of communication cost. There are two types of communi-
cation among tasks. If two connected tasks are assigned to the same physical node, they use inner-node
communication mechanism; otherwise, they use inter-node communication. Generally speaking, inter-node
communication is much slower than inner-node communication. Therefore, we need to minimize inter-node
communication while keeping computation load balanced on each node.

3 Graph-partitioning Based Schedulers

In this section, we first introduce the notations and our graph partitioning models of the scheduling problems.
Then we present the graph-partitioning based schedulers. Table 1 lists the symbols used in this paper.

3.1 Problem Definition

Graph Partitioning. Given a graph G(V, E') where V' denotes the set of vertices and E denotes the set of
edges, we let P = {Py,...,P; } be k subsets of V. P is defined to be a partition of G if: P; # (0, P, N P; =),
and UP; =V (4, j = 1,....k; © # 7). The number £ is called the cardinality of the partition. Graph partitioning
problem is to find an optimal partition P based on an objective function. Here we give a formal definition:

Definition 1 The graph partitioning problem can be defined by a triplet (S, p,). S is a discrete set of all
the partitions of G. p is a predicate on S which creates a admissible solution set Sy, € S. All the partitions
in Sy is admissible for p. The aim is to find a partition P € S, that minimizes the objective function f(P):

pP= i P 1
arg min f(P) (D
Graph Partitioning in Real-time Stream Processing System. For real-time stream processing systems, we

can use G(V, E), a directed acyclic graph, to represent the topology 7. The vertex v; € V is the i-th com-
ponent in the topology which can be a spout or a bolt. As mentioned above, each processing component

l Symbols \ Description

G¢(Va, Ey) task graph
Gy4(Vg, Eg) global task graph
n; i-th physical node
w(n;) maximum processing capability of node n;
w(n;) capacity used in node n;
v, P; i-th task and i-th set of tasks
[vil, | P computation cost of task v; and the set P;
N(v) neighbors of vertex v
Edgecut(P;, P;)|number of cross edges between two sets P;, P;
Comm/(P;, P;) | communication cost between two sets P;, P;
rc(vs, vj) bandwidth cost between two tasks v;, v;
I'(v;) total inter-node communication cost of v;

Table 1: Notations.

consists of several tasks. Thus, we have v; = {t}, 2, ...t }, where t? is the n-th task for processing compo-

nent v; and m is the number of parallelized tasks of the i-th component. The edge (i, j) € E denotes each
task in v; is connected to each task in v;. Then, we can use a directed acyclic graph, G (V4, E¢), to represent
the graph of tasks. A vertex v; in V; represents a task and an edge (4, j) in E; represents the connection from
task v; to v;. The data flow of the topology is organized as a graph of tasks. Here we give a formal definition
of the scheduling methods based on graph-partitioning in real-time systems.

Definition 2 Given a task graph G(V;, E;), where each vertex represents a task and each edge denotes the
data flows between them, the goal of a graph-partitioning based scheduling method is to partition G, into
k parts, so that each part has the same number of tasks and the number of edges between different parts is
minimized. We assume that each part P; is allocated to the i-th physical node.

3.2 Bootstrap Scheduler

Motivation. In real-time stream processing systems, the key of the scheduling algorithm is to balance the
computation cost and minimize the communication cost. The even scheduler achieves balanced computation,
while overlooks the importance of communication cost. Since the processing latency is dominated by inter-
node transfer time, reducing the tuples sent through the network can help to improve the performance. In this
section, we propose Bootstrap Scheduler that considers both computation cost and communication cost.
Modeling the Node Capability and Tuple Cost. We first formally model the capability of physical nodes
and the cost of tuples. Given a cluster consisting of m physical nodes — N = {ng,...,n,, }, we define
that the maximum processing capability of node n; is w(n;), and the current computation capacity of n;
is denoted as w(n;). For Bootstrap Scheduler, which is executed before the topology is actually executed,
we cannot measure the computation cost of a task to process a tuple and the communication cost to transfer
a tuple between two tasks. Therefore, we assume that the communication cost to transfer a tuple is equal
to one and the computation cost to process a tuple is equal to one for all the tasks. In other words, w(n;)
denotes the number of tasks each node can handle, while w(n;) denotes that already handled.

Graph Partitioning in Bootstrap Scheduler. The goal for Bootstrap Scheduler is to partition G¢(V;, E;)
into m parts — P = { Py, ..., P}, and then assign each part P; to the physical node n;, so that the total
inter-node communication cost is minimized and the processing cost does not exceed each node’s maximum
capacity w(n;). Therefore, we can formalize the objective function for Bootstrap Scheduler:

f(Py= > (Edgecut(P;, P;)) 2)

i,j€[1,m] iz

—

> Bolt4 @—b Boltl —¥ Bolt2 Bolt3 — Bolt4

Bolt2

®--<

Bolt3 \—/
a. Original Topology b. Linearization Result
Fig. 2: An Example of Topology Linearization.
S,={PeS, |P| <w(n),ie€ll,m]} 3)

where Edgecut(P;, P;) denotes the number of cross edges between P; and P}, and | P;| denotes the compu-
tation cost of P;. Then f(P) measures the total communication cost of graph G(V;, E;) and S, is the set of

admissible solutions. Based on Equation 2 and 3, the aim is to find the partition P € S, that minimizes f:

P=arg II)I%I;) B Z | ‘(Edgecut(P,;, P))) 4)
i,j€[l,m] i#j

This graph partitioning problem is NP-hard by reducing it to Task Allocation Problem [4]. Bootstrap
Scheduler leverages a linear streaming method to solve the above graph partitioning problem.

If the vertices of the task graph arrive in some order with the set of their neighbors, and we partition
the graph based on the vertex stream, it is called a streaming graph partitioning, which is fast and easy
to implement. Streaming graph partitioning decides which part to assign the incoming vertex to. Once the
vertex is placed, it will not be removed. This algorithm makes decisions based on incomplete information;
therefore, the order of vertex stream will significantly affect the performance [20]. In this paper, we use a
novel linearization approach to get the stream order.

Topology Linearization. We linearize the topology based on the property of DAG using topological sorting.
Given G(V4, E), if a task v; emits tuples into a stream that is consumed by another task v;, then we have
v; < v, where the < denotes the partial order between v; and v;. If v; < v; and v; < vg, we have v; < vy
by transitivity of partial order. Since we deal with acyclic graphs, we can determine a linearization £ of the
components according to the partial order: (D) If v; < v; holds, then v; appears in £ before v;. @ If neither
v; < v; nor v; > v; holds, v; and v; can appear in £ in any order. 3) The first element of £ is a random spout
task vy, of the topology. Figure 2 showcases an example of a linearization of a topology with 5 components.

The linearization approach generates a linear order of tasks for the input stream. Then we study a one-
pass method to partition the graph with this order. There is a streaming loader to successively read vertices
(tasks), and send them to the partition program. Afterwards, the program determines the assignment of each
incoming vertex (task) according to the current partition state and vertex information.

Intuition for Task Assignment. There are two intuitions the task (vertex) assignment should consider.

1. The first intuition is that we need to assign a task to the physical node that has less running tasks, in
order to balance the computation cost and prevent too much computational load on one node.

2. The second intuition is that we need to assign a task to the physical node that has more neighbors of the
task, in order to minimize the inter-node communication cost.

A Heuristic Solution. Motivated by these two intuitions, we use a novel streaming heuristic to solve the
graph partitioning problem, i.e., to decide which part to assign the incoming vertex (task) v to.

. |]
index = argig[llé?i;]{\Pz NN ()| <1 w(m))} (5)
In the above equation, m is the number of the partitions, cw(n;) is the total capacity of physical node
n;, and N (v) is the set of neighbors of vertex v. For each node n;, the first part | P; N N (v)| measures the
number of neighbors of the incoming vertex, and the second part (1—|P;|/zo(n;)) measures the computation
idleness. In other words, we make a combinatorial decision considering both balancing the computation load
and minimizing the inter-node communication.

Algorithm 1 Bootstrap Scheduler Algorithm 2 Dynamic-Task-Reassignment

Require: # of physical node: m, DAG: G¢(V;, Et). Input: Partition result: P = {Pi,...,Pn}; 6; G, =
Ensure: Partition P = {Py, P, ..., P } for G¢(V4, Ey). (Vy, Eg) and re(vg, vy) v, v5 € V.
1: L@, S<all vertices v with in(v) = 0, P+ 1: for each P; in P do
2: for each vertex v in S do 20 if 30 cp [v] > 0 then
33 S=8-v 3: List < Sort {I'(v),v € P;} in non-descending
4 L=LUv order
5: for each vertex u that has edge(v,u) € E; do 4 while >° _, |v| >0 do
6: Ey = E; — edge(v,u) 5 vy = pop(List)
7: if in(u) = 0 then 6: J = argmax,ep; izi{>_ rc(ve, v5)}
8: S=SUu 7: Reassign v, to the node j
9: end if 8: Vi=Vi-v
10: end for 9: end while
11: end for 10: endif
12: if E; # & then 11: end for
13: return Error: the graph is not DAG.
14: end if

15: SL = streamingloader(£)

16: for each vertex v in SL do

17: index = argmax{|P; N N(v)] (1 — %)},
18: Insert vertex v into Pjpges;

19: end for

20: return P

Let in(v) denote the incoming degree of vertex v, we summarize Bootstrap Scheduler in Algorithm
1. The topology linearization is executed in line 1-14. With the streaming graph-partitioning heuristic, we
partition the task graph G(V;, E;) into m parts (line 15-19). Finally we assign the tasks to m physical nodes
according to the partition result P.

3.3 Rebalance Scheduler

In this section, we propose Rebalance Scheduler which leverages the runtime statistics to assign all the
topologies to improve the overall performance. Rebalance Scheduler uses two techniques for task realloca-
tion, i.e., global-topology-graph-partitioning to repartitions all the topologies and dynamic-task-reassignment
to move tasks from skew nodes to idle ones automatically. Following, we first discuss the motivation, and
then describe these two techniques in detail.
Motivation. Bootstrap Scheduler produces an initial assignment of the tasks when it is submitted. The goal
of Bootstrap Scheduler is to allocate tasks to physical nodes so as to satisfy the constraint on the number of
running tasks on each physical node and minimize the inter-node communication cost. Bootstrap Scheduler
is executed before the topology actually runs and only considers the newly committed topology. In practice,
however, there are other topologies running on the system before the new topology is committed. Therefore,
the scheduler should allocate tasks based on all the running topologies. Besides, for Bootstrap Scheduler,
we assume that the communication cost to transfer a tuple equals to one and the computation cost to process
a tuple equals to one for all the tasks. However, in practice, the computation cost to process a tuple and the
communication cost to transfer a tuple are significantly different for different tasks.

Traditional database systems use collected historical statistics to estimate the running time for query
optimization. For real-time stream processing systems, we also study the strategy that collects historical
information to estimate the computation cost and communication cost of each task during the execution.

Metrics of Computation Cost and Communication Cost. To measure the runtime statistics in terms of the
computation cost and communication cost of each task, we use two metrics as described below.

1. Computation cost of a task is measured by the average computation time for processing a tuple for a
certain task. To measure this metric, we use the running logs to estimate the computation cost of a certain
task during the execution. In order to deal with the heterogeneity of nodes in the clusters (different compu-
tational abilities such as different CPU frequencies), we need to consider the CPU speed of the nodes. For
example, if a task takes 10 millisecond on a IGHz CPU, then migrating the task to a node with 2GHz CPU
would generate about a time cost of 5 millisecond. For this reason, we measure the computation cost unit
as the multiplication of CPU frequency(GHz) and time(millisecond). Specially, in the above example, the
computation cost for that task to process one tuple is 10.

2. Communication cost between two tasks is measured by the average size of data transferred between
them. Similar as the measurement of the computation cost, we log the size of package for the tuple transferred
from one task to the other during the execution. Then we use the average size of package for transferring one
tuple as the average communication cost. We use 1024 Bytes as the unit. For example, if the average size of
a tuple transferred from task 7 to task j is 5 KB, then the communication cost between ¢ and j is 5.

Global-Topology-Graph Partitioning. In order to better partition the tasks of the running topologies, we
model the global-topology-graph which contains all the topologies running on the cluster. The global-
topology-graph is represented as a weighted directed acyclic graph G4(V, E,), where V, is the set of all the
tasks in the cluster and F, is the set of connections between tasks. The weight of each vertex v; represents
the computation cost of task v;, denoted as comp(v;). The weight of each edge (v;, v;) represents the com-
munication cost between task v; and vj, denoted as comm(v;, v;). Let Gi(V/, E}),i € [1,m] be a single
topology running on the system, we can generate the global-topology-graph G|:

Gg:(U Vti7 U Etl)

i1€[1,m] 1€[1,m]

The global-topology-graph is the combination of all the topologies run on the system with the weight of
the computation cost and communication cost. With the global-topology-graph, we can allocate the topolo-
gies based on the global information of all the topologies. Besides, the vertex weight and edge weight of
global-topology-graph provide us the information of the heterogeneity of the tasks which further improves
the accuracy of the partition result.

Given a global-topology-graph G4 (V,, E,), our goal is to partition the graph G4(V,, E,) into m parts
— P ={Py,..., Py}, and assign each part P; to a physical node n;, so that the inter-node communication
cost is minimized and the processing cost on each node does not exceed the maximum capacity w(n;). We
define our objective function f(P) and the admissible solution set .S, as follows:

f(Py=" > (Comm(P;,P))) 6)
i,J€[1,m],i#]
Sy, ={P € Sand|P;)| <w(n;),i€[l,m]} 7

where P; denotes the vertex set of the i-th part, and Comm(P;, P;) denotes the sum of communication cost
between P; and P; which can be computed as:

Comm(P;, Pj) = Z Z comm(v;, v;) (8)
v €EP; v; EP;

This graph partitioning problem aims to find the partition P € Sp that minimizes:

P = arg IIDIéiél Z Comm(Pi, Pj) 9)
P Gel,m] i)

This graph partitioning problem is known as the k-balanced graph partitioning problem and has been
proved NP-hard [3]. Similar to Bootstrap Scheduler, we use a streaming graph partitioning heuristic to solve
the k-balanced graph partitioning problem. We first use topological sorting to linearize the global-topology-
graph into a linearized vertex stream L. For a vertex v from £, we use the following partitioning heuristic to
determine which node to assign it to.

inder = arg max { Z |z] (1 _ A >} (10)

i€ftml x€P;NN(v) w(nl)

where w(n;) is the maximum computation ability of physical node 4, N (v) is the set of neighbors of vertex
v, |x| is the computation cost of task x, and |P;| is the sum of computation cost of tasks on physical node
P;. Different from Bootstrap Scheduler, we take into consideration the real-time computation cost of all the
tasks on each physical node. The basic intuition is quite similar, we choose a physical node most relevant to
task v with most capacity remained when assigning task v.

Dynamic-Task-Reassignment. During the execution of the system, we further use the statistics of log to
monitor the running status of each node. If some nodes become bottlenecks of the whole system, we dy-
namically reassign the tasks from these nodes to other nodes with less workload to improve the overall
performance. We use a threshold 6 to judge whether a node is skew enough and needed to reassign its tasks
to other nodes. The threshold is defined as follows:

Zze[l,m] | | (11)
m

Here 9 is the percentage we will discuss in Section 5.3, | P;| is the total computation cost of node 4 and m is
the number of the physical nodes. The basic intuition is that, if the computation cost | P;| of physical node ¢
is higher than the average cost among the cluster by 6, then we move some tasks from that node to others.

Here we propose a novel heuristic to move the tasks to an appropriate node. The movement tries to
minimize the inter-node communication cost and rebalance the computation cost of each node in the cluster.
For a task v; in the system, StroMAX logs the bandwidth cost of the communication between two tasks,
denoted by rc(v;, v;). If v; and v; are on the same node, we have rc(v;, v;) = 0. Let N (v) be the neighbor
set of task v;, the total inter-node bandwidth of v; is denoted as I"(v;).

I'(v;) = Z re(vi, vy)

v;€N(v)

0 =19 =%

The algorithm of reallocating tasks is illustrated in Algorithm 2. If node ¢ needs a reassignment, we first
choose the tasks with more inter-node communication according to I'(v;). Specially, we sort the remote
communication bandwidth of each task in a non-descending order (line 3), and greedily reassign the task
with the max I"(v;) to the node which communicates with v; most frequently, i.e., maximal communication
cost (line 5-7). When a task is removed, the estimated communication cost of the node will be decreased by
I'(v;). The reassignment stops when the total computation cost is below the threshold.

4 The StroMAX Architecture

System Architecture. Figure 3 shows how StroMAX is integrated into Storm. Note that our system can be
migrated to other real-time stream processing systems as well. For the Storm cluster, there are three types
of nodes — one master node called the nimbus node, zookeeper nodes, and worker nodes. When a new
topology is submitted, the nimbus allocates the tasks to the workers and monitors failures. The zookeeper
maintains the coordination state of nimbus and worker nodes. The topologies are executed on the worker
nodes where a supervisor daemon is run on each worker for communication with zookeeper.

Schedule

Nimbus
StroMAX ‘ Manager ‘

Zookeeper Server ‘

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
t g
| I
| I

Schedule Schedule Schedule Schedule
Monitor Monitor Monitor Monitor
.)
Physical Node #1 Physical Node #2 Physical Node #3 Physical Node #4
i i i i i i i i
D e e e
Supervisor Supervisor Supervisor Supervisor

Fig. 3: Architecture of StroMAX.

The components of StroMAX run on the nimbus node and worker nodes. There is a schedule manager

running on the nimbus node that provides meta data for partitioning. It stores the meta data of the cluster
and log statistics submitted from StroMAX monitors. When a new topology is committed, the schedule
manager analyzes and partitions the topology by Bootstrap Scheduler. Then, it triggers the global-topology-
graph-partitioning and dynamic-task-reassignment to rebalance the tasks running on the cluster. A schedule
monitor runs on each worker node to record, collect, and report log information to the schedule manager. It
also calculates the computation and communication measurements. For example, we use the Java API to log
the CPU time for 1000 tuples and then calculate the average computation cost.
Implementation of Task Reassignment. To reassign the tasks, we use the Storm infrastructure, which sup-
ports suspending and resuming tasks during runtime. Storm blocks the spouts, and thus prevents new stream
from being propagated to the bolts and forwarded through the topology. Then all of the in-flight data is
propagated through the bolts until all communication queues among these bolts are empty. Our scheduler
then reconfigures the cluster by reassigning tasks to proper physical nodes.

5 Evaluation

In this section, we conduct extensive experiments to evaluate StroMAX. We first describe the experimental
setup, then present and discuss the performance with different workload settings.

5.1 Experimental Settings

In this section, we briefly introduce the experimental settings for the evaluation, including the cluster, work-
load, and evaluation metrics. All the evaluation results are measured by average of five executions.

Cluster. All the experiments were conducted on a cluster of 42 nodes. Each node was equipped with two
2.80GHz Intel Xeon E5-2680 CPU, 2GB memory, and 48GB SSD disk. All the nodes were connected by
1Gb bandwidth routers. We used one node for the nimbus, one for the zookeeper, and 40 for the workers.
Workload. Experiments are conducted with six data processing topologies as illustrated in Figure 4 and
described below — word count (WC), throughput test (TT), twitter trending topics (TWTT), log processing
(LP), twitter stream sentiment analysis (TSSA), and synthetic communication (SC). We compared our pro-
posed schedulers against the default scheduler in Storm. To find a proper tuple input rate for each topology,
we first used a low initial rate and increased it gradually, until the average CPU usage of the cluster is above
50%. Then we used this rate in the whole evaluation.

Split Count Identity Anchor Prepare Rank Merge
@—’ Bot % Bolt @" Bot > Bot Bot > Bot > Bot

a. Word Count Topology b. Throughput Test Topology c. Twitter Trending Topics Topology
Count

Bolt Com
Log Stash |- Fg‘(')is Com #
Index #

e Com

d. Log Processing Topology #5
Com
#1
Positive Com
Bolt #6
Sensiti ci Joi s Com
ensitize lean join core #3
Bolt > Bolt Bolt > Bolt Com
Negative #7
Bolt

e. Twitter Stream Sentiment Analysis Topology f. Synthetic Communication Topology

Fig. 4: Evaluated Topologies.

1. Word Count (WC): WC is a basic topology shown in Figure 4a. It has one spout and two bolts. The
Spout reads English words one line at a time from a local file which is made from 10 thousand random pages
crawled from Wikipedia. The Split Bolt splits each line into words and passes them to the Count Bolt. The
Count Bolt increases the counters based on distinct input word tuples and produces the results.

2. Throughput Test (TT): TT has one spout and two bolts as shown in Figure 4b. The Spout repeatedly
generates random 10 KB strings as input tuples. The Identity Bolt emits the received tuples to the Anchor
Bolt without any change. The Anchor Bolt increases a counter by one and records the processing time.

3. Twitter Trending Topics (TWTT): This topology computes the top-k trending twitter topics as shown in
Figure 4c. The topology is a pipeline of one spout and three bolts. The Spout pushes tweets into the topology.
Then the Prepare Bolt updates the counter of each topic, partitions topics alphabetically, and propagates the
topic/count pairs. The Rank Bolt receives the topic/count pairs and maintains a list of top-k topics. Finally,
the Merge Bolt merges all the lists to produce a single list of the current top-k topics. We used a dataset with
one million English tweets from Twitter4j API.

4. Log Processing (LP): LP presents a real-world case of log processing which is shown in Figure 4d. The
Spout reads tuples from an open-source log agent, Log Stash, as the input for the topology. The Log Stash
reads log information from local file which is the kernel logs of Ubuntu server of our lab. The Rules Bolt
performs a rule-based analysis on the log and emits log entry tuples to the Index Bolt and Counter Bolt. The
Index Bolt and Counter Bolt perform the indexing and counting operations on the log entries respectively.

5. Twitter Stream Sentiment Analysis (TSSA): This topology analyzes sentiment of tweets. The Spout, as
shown in Figure 4e, parses the Twitter JSON data and emits tuples into the topology. The Sensitize Bolt
performs the first-round data sensitization which removes all non-alpha characters. Following, the Clean
Bolt performs the next round of data cleaning by removing stop words to reduce noise for the classifiers.
The Positive Bolt and Negative Bolt are two classifiers for the positive and negative classes. Next, Join Bolt
joins the scores from the two previous classifiers, and the Score Bolt compares the scores from the classifiers
and declares the class accordingly. We used the same dataset for twitter trending topics from Twitter4j APL

6. Synthetic Communication (SC): This is a synthetic topology as shown in Figure 4f. The Spout reads one
line at a time from the local file used in the WC topology. Each Communication Bolt doubles the received
words and passes them to the next bolt. This is a typical communication intensive workload.

Evaluation Metrics. We use two metrics to systematically evaluate the result of our experiments.

— Tuple Processing Time (TPT): It presents the average elapsed time for a tuple emitted from spout till
its completion. We leveraged the timing mechanism in Storm to track each tuple’s processing time. We
calculated the average TPT every 30 seconds for performance evaluation.

300 —y T T T T T T T T T T T T T T T 500 — T T T T T T T T T T T T T T T T T

—&— Bootstrap Scheduler
—— Default Scheduler

—a&— Bootstrap Scheduler |
== Default Scheduler

Tuple Processing Time (ms)

Tuple Processing Time (ms)

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570
Running Time (s) Running Time (s)

a. Tuple Processing Time on LP Topology. b. Tuple Processing Time on TSSA Topology.
Fig. 5: Tuple Processing Time on Two Workloads.

— Inter-Node Bandwidth (INB): It indicates the inter-node bandwidth of the topology during the execution.
INB can well characterize the effect of our graph-partitioning based schedulers because they are designed to
reduce the cost of inter-node communication among physical nodes.

5.2 Effect of Bootstrap Scheduler

Results and Analysis. We first evaluate the performance of Bootstrap Scheduler. We used 40 worker nodes,
with 10 task slots on each node. Here we present the results on LP topology and TSSA topology as repre-
sentatives. The experimental results on the other workloads yield similar improvements.

1. Log Processing (LP): For this topology, we used 10 tasks for the spout, 50 tasks for the log rule bolt, 30
tasks for the index bolt, and 30 tasks for the counter bolt. Figure 5a shows the TPT of the default scheduler
and Bootstrap Scheduler on this topology. The TPT of Bootstrap Scheduler is reduced by 37% on average
compared to the default scheduler during the first 10 minutes. This is because Bootstrap Scheduler reduces
inter-node communication cost by considering the structure of the committed topology while the default
scheduler evenly distributes the task to the physical nodes.

2. Twitter Stream Sentiment Analysis (TSSA): For this topology, we used 8 tasks for tuple input, and 20
tasks for each of the other bolts. As shown in Figure 5b, the TPT of Bootstrap Scheduler is shorter than
that of the default schduler by 39% on average after the system reaches a stable state. The TPT of TSSA
is higher than that of LP because the graph structure of TSSA is more complicated, which incurs more
inter-node communication, as shown in Figure 4d and 4e.

Summary. When a new topology is committed to the system, Bootstrap Scheduler can analyze and assign its
tasks to the proper physical nodes. This assignment takes inter-node communication cost into account, thus,
Bootstrap Scheduler outperforms the default Storm scheduler. The above experiments prove that, with the
help of graph partitioning, Bootstrap Scheduler can significantly reduce the average tuple processing time
on various workloads.

5.3 Effect of Rebalance Scheduler

We next present the performance of Rebalance Scheduler. Rebalance Scheduler uses two techniques for task
reallocation, i.e., global-topology-graph-partitioning which repartitions all the topologies on the cluster and
dynamic-task-reassignment which moves tasks from overloaded nodes to idle ones automatically.

Effect of Global-Topology-Graph-Partitioning. In this experiment, we initially committed the WC topol-
ogy to the cluster, then we committed the TT topology after 30 seconds and the TWTT topology after 60

300

m ——— After Global Topology Graph Partitioning | & —>— After Global Topology Graph Partitioning
3 —aA— Before Global Topology Graph Partitioning | £ 280 - —a— Before Global Topology Graph Partitioning |
g g 260
= =
j=2] o) 240
£ £
& @ 20
Q Q
o o
<] O 200
a a
o D 180t
Q. Q.
=] =]
L = 160 |-
00 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570
Running Time (s) Running Time (s)
a. Word Count Topology. b. Twitter Trending Topics Topology.
Fig. 6: Evaluation of Global-Topology-Graph-Partitioning.
30.7Mbps ~_ Positive 21Mbps ~ Positive
116.3Mbps 81Mbps "4 Bot NSRS oo 83.5Mbps 60.2Mbps Bot \'MPPS 0 5Mbps
Sensitize Clean Join Score Sensitize Clean Join Score
Bot > Bot Bt > Bot Bt > Bot Bt > Bot
Negative Negative
35.1Mbps Bolt 9.2Mbps 27.9Mbps Bolt 2.6Mbps
a. INB before Dynamic-Task-Reassignment. b. INB after Dynamic-Task-Reassignment.

Fig. 7: INB between Components of Twitter Stream Sentiment Analysis Topology.

seconds. These topologies were allocated by Bootstrap Scheduler when committed. As same as the setting
in Bootstrap Scheduler, we used 40 worker nodes, with 10 task slots on each node. In addition, we used 5
tasks for each spout and 20 tasks for each bolt. We started global-topology-graph-partitioning to reassign the
tasks of these topologies at 300 seconds.

Figure 6 summarizes the TPT of these three topologies in 10 minutes. Due to the space constraint, we
present the results of WC and TWTT topologies, and the result of TT topology is similar. As we can see,
once global-topology-graph-partitioning was triggered, it calculated a new assignment for all the topologies
in the cluster, which briefly increased the tuple processing time of these topologies. Afterwards, the tuple
processing time dropped sharply to a normal value and outperformed the previous result, with a 10.9%-
26.5% reduction of TPT on these workloads. This is because global-topology-graph-partitioning utilizes the
collected runtime statistics to estimate the computation cost and communication cost of each task during the
execution, and then optimizes the task assignment for all the topologies. In contrast, Bootstrap Scheduler
allocates the newly committed topology via the graph partitioning result of a single topology. Therefore,
when we commit three different topologies to the system, global-topology-graph-partitioning improves the
tuple processing time based on the runtime result of Bootstrap Scheduler.

Effect of Dynamic-Task-Reassignment. We proceed to evaluate the effect of the dynamic-task-reassignment.
We used 40 worker nodes, with 10 task slots on each node. We committed all the 6 topologies to the sys-
tem with Bootstrap Scheduler. We used 3 tasks for each spout and 10 tasks for each bolt. We reassigned
the tasks by global-topology-graph-partitioning after the system reached a stable state. Then we used the
dynamic-task-reassignment to monitor and reallocate the tasks when they were skew enough. We recorded
the inter-node bandwidth (INB) between components of the TSSA topology before and after executing the
dynamic-task-reassignment.

As shown in Figure 7, most of the inter-node bandwidths were reduced after the dynamic-task-reassignment.
Specially, the communication cost between the Spout and Sensitive Bolt decreased from 116.3Mbps to
83.5Mbps, and the cost between the Negative Bolt and Join Bolt decreased from 9.2Mbps to 2.6Mbps.
Parameter Tuning of Dynamic-Task-Reassignment. As we mentioned in Section 3.3, we use a parameter
¥ to judge whether a node is skew enough and needed to reassign its tasks to other nodes. We have conducted

400 ; ; ; 30 T StoMAX

I StroMAX —A- |deal
B Default Scheduler

8

w
o
o

Input Throughput (MB/s)

-
o
o
T
I

100

Tuple Processing Time (ms)
S
o
T
.

0 5
Log Processing Trending Topics Sentiment Analysis Throughput Test Word Count Number of Workers

a. Overall Performance. b. Scalability.
Fig. 8: Overall Performance and Scalability of StroMAX.

a series of experiments to investigate the selection of ¢J. Due to the space limit, we do not show the details
of parameter tunning.

We find that when 9 is chosen between 10% and 15%, the dynamic-task-reassignment achieves the best

performance for most of the workloads. The reason is that, when ¢ is small (¢ < 10%), there are too many
tasks reallocated during the execution. When 9 becomes larger (9 > 15%), the reassignment is hard to be
triggered. Thus we use ¥ = 12% for the dynamic-task-reassignment in our experiments.
Summary. The above experiments indicate that Rebalance Scheduler can efficiently reduce the communi-
cation cost among the components of the topologies by reassigning the tasks based on the global-topology-
graph. It leverages the statistics of log to monitor the running status of each node and dynamically reallocates
bottleneck tasks. Therefore, Rebalance Scheduler can significantly improve the performance of real-time
processing systems.

5.4 Overall Performance and Scalability of StroMAX

Overall Performance. In this part, we investigate the overall performance of StroMAX. In this experiment,
we executed each of the five topologies on the cluster separately. The process was as follows: we added the
topologies onto the cluster one by one. When a topology finished, we restarted the cluster and deployed a
new topology onto the cluster with the help of Bootstrap Scheduler and Rebalance Scheduler.

Figure 8a illustrates the TPT of StroMAX and the default Storm scheduler on five topologies. As we can

observe, compared to the default scheduler, the TPT of most workloads significantly decreases. For instance,
the TPT on TT topology decreases by 87.3%. These results confirm that StroMAX can significantly reduce
the tuple processing time and inter-node communication cost with the graph partitioning. Besides, the results
also reveal the generality of the proposed approach that it can be applied to various workloads.
Scalability Study. Scalability is an important issue for real-time stream processing systems. We further
evaluate the scalability of StroMAX by increasing the number of worker nodes. We increase the number of
worker nodes from 5 to 40, and present the input throughput of the TSSA topology in Figure 8b. We use both
Bootstrap Scheduler and Rebalance Scheduler to schedule the topology. We use an ideal curve to represent
the ideal execution time which assumes that the performance is linear to the number of the workers. As
expected, as the number of workers increases, the throughput performance of StroMAX is close to the ideal
case. This result confirms that StroMAX has a graceful scalability.

6 Related Work

The graph-partitioning based scheduling problem in real-time stream processing systems discussed in this
paper is related to several fields. We briefly review the most relevant works.

Real-time Stream Processing Systems. System S [2] is a stream processing system developed by IBM. A
query in System S is modeled as an event processing network which consists of a set of event processing
agents. S4 [14] is another stream processing system, developed by Yahoo, where queries are designed as
graphs of processing elements. Recently, Storm [21,10,11], an open-source, distributed, reliable, and fault-
tolerant processing system, was proposed by Twitter for real-time stream processing. Some works [5] tried
to bridge the gap between stream workload and MapReduce abstraction by proposing a stream version of the
MapReduce approach. In these systems, events flow among the map and reduce stages without incurring.
Wang [23] studied the problem of efficient load distribution in D-DSMS to minimize end-to-end latency.
Besides, Xing [24] studied operators moving to dynamically change loads in high-performance computing
clusters such as blade computers.

Graph Partitioning. Graph partitioning is a optimization problem which has been studied for decades
[25,18]. The widely used k-balanced graph partitioning aims to minimize the number of edge-cut between
partitions while balancing the number of vertices. Though the k-balanced graph partitioning problem is an
NP-Complete problem [8], several solutions have been proposed to tackle this challenge. Andreev et al. [3]
presented an approximation algorithm which guarantees polynomial running time with an approximation ra-
tio of O(logn). Another solution was proposed by Even et al. [7] who gave an LP method based on spreading
metrics which also gets an O(logn) approximation. Besides approximated solution, Karypis et al. [13] pro-
posed a parallel multi-level graph partitioning algorithm to minimize the bisection on each level. There are
some heuristic implementations like METIS [12], parallel version of METIS [16], and Chaco [9] which
are widely used in many existing systems. Although these heuristics cannot provide a precise performance
guarantee, they are effective.

The aforementioned methods are offline and generally require long processing time. Recently, Stanton
and Kliot [20] proposed a series of online streaming partitioning method using heuristics. Fennel [22] ex-
tended the Stanton’s work by proposing a streaming partitioning framework which combines some other
heuristic methods. However, these methods are designed for generally graph partitioning and lack the con-
sideration of the characteristics of DAG.

Beyond these static graph partitioning technologies, Nicosia [15] theoretically studied how to adapt to
the graph structure changing without the overhead of reloading or repartitioning the graph. Some of the
recent works [26,6] can cope with the changes in graph structure. However, the cost of these approaches
to handle the changes is quite high. Shang et al. [17] investigated several graph algorithms and proposed
simple, yet effective, policies that can achieve dynamic workload balance, while this approach uses hashing
partitioning as the initial input.

7 Conclusion

In this paper, we systematically investigated the performance issues of real-time stream processing systems.
We designed a novel system, StroMAX, to allocate the topology based on two graph partitioning based
schedulers. The first scheduler, named Bootstrap Scheduler, analyzes the topological graph and partitions
the topology when it is committed to the system. The second scheduler, named Rebalance Scheduler, goes
one step further by monitoring the effectiveness of all the topologies and the load of cluster during runtime.
Rebalance Scheduler then rebalances the topologies for a performance improvement when necessary. The
experimental results confirmed the improvements of our proposed approaches.

Acknowledgment

This research is supported by the National Natural Science Foundation of China under Grant No. 61572039,
973 program under No. 2014CB340405, Shenzhen Government Research Project JCYJ20151014093505032,
and Tecent Research Grant (PKU).

References

Flume, http://flume.apache.org/
Amini, L., Andrade, H., et al.: Spc: A distributed, scalable platform for data mining. In: DM-SSP. pp. 27-37 (2006)
Andreev, K., Racke, H.: Balanced graph partitioning. Theory of Computing Systems 39(6), 929-939 (2006)
Billionnet, A., Costa, M.C., Sutter, A.: An efficient algorithm for a task allocation problem. JACM 39(3), 502-518
(1992)
5. Brito, A., Martin, A., Knauth, T., Creutz, S., Becker, D., Weigert, S., Fetzer, C.: Scalable and low-latency data
processing with stream mapreduce. In: CloudCom. pp. 48-58 (2011)
6. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L., Zhao, F., Chen, E.: Kineograph:
taking the pulse of a fast-changing and connected world. In: EuroSys. pp. 85-98 (2012)
7. Even, G., Naor, J., Rao, S., Schieber, B.: Fast approximate graph partitioning algorithms. In: SODA. pp. 639-648
(1997)
8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: STOC. pp. 47-63 (1974)
9. Hendrickson, B., Leland, R.-W.: A multi-level algorithm for partitioning graphs. SC 95, 28 (1995)
10. Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video recommendation exploration. In:
SIGMOD. pp. 35-46 (2016)
11. Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: Tencentrec: Real-time stream recommendation in practice. In:
SIGMOD. pp. 227-238 (2015)
12. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP. pp. 113-122 (1995)
13. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. In: SC (1996)
14. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing platform. In: ICDM. pp. 170-177
(2010)
15. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. Chaos:
An Interdisciplinary Journal of Nonlinear Science 22(2), 023101 (2012)
16. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint graph partitioning. Concurrency
and Computation: Practice and Experience 14(3), 219-240 (2002)
17. Shang, Z., Yu, J.X.: Catch the wind: Graph workload balancing on cloud. In: ICDE. pp. 553-564 (2013)
18. Shao, Y., Cui, B., Ma, L.: Page: a partition aware engine for parallel graph computation. TKDE 27(2), 518-530
(2015)
19. Shi, X., Cui, B., Shao, Y., Tong, Y.: Tornado: A system for real-time iterative analysis over evolving data. In:
SIGMOD. pp. 417-430 (2016)
20. Stanton, 1., Kliot, G.: Streaming graph partitioning for large distributed graphs. In: KDD. pp. 1222-1230 (2012)
21. Toshniwal, A., Taneja, S., et al.: Storm@ twitter. In: SIGMOD. pp. 147-156 (2014)
22. Tsourakakis, C.E., Gkantsidis, C., Radunovié, B., Vojnovi¢, M.: Fennel: Streaming graph partitioning for massive
scale graphs. Tech. rep., Microsoft (2012)
23. Wang, W., Sharaf, M.A., Guo, S., Ozsu, M.T.: Potential-driven load distribution for distributed data stream process-
ing. In: SSPS. pp. 13-22 (2008)
24. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the borealis stream processor. In: ICDE. pp. 791—
802 (2005)
25. Xu, N., Cui, B., Chen, L., Huang, Z., Shao, Y.: Heterogeneous environment aware streaming graph partitioning.
TKDE 27(6), 1560-1572 (2015)
26. Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large graphs. In: SIGMOD. pp.
517-528 (2012)

bl NS

http://flume.apache.org/

	StroMAX: Partitioning-based Scheduler for Real-time Stream Processing System
	Introduction
	Background
	Graph-partitioning Based Schedulers
	Problem Definition
	Bootstrap Scheduler
	Rebalance Scheduler

	The StroMAX Architecture
	Evaluation
	Experimental Settings
	Effect of Bootstrap Scheduler
	Effect of Rebalance Scheduler
	Overall Performance and Scalability of StroMAX

	Related Work
	Conclusion

