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ABSTRACT
Given a graph, SimRank is one of the most popular measures of
the similarity between two vertices. We focus on efficiently calcu-
lating SimRank, which has been studied intensively over the last
decade. This has led to many algorithms that efficiently calculate
or approximate SimRank being proposed by researchers. Despite
these abundant research efforts, there is no systematic comparison
of these algorithms. In this paper, we conduct a study to compare
these algorithms to understand their pros and cons.

We first introduce a taxonomy for different algorithms that cal-
culate SimRank and classify each algorithm into one of the follow-
ing three classes, namely, iterative-, non-iterative-, and random
walk-based method. We implement ten algorithms published from
2002 to 2015, and compare them using synthetic and real-world
graphs. To ensure the fairness of our study, our implementations
use the same data structure and execution framework, and we try
our best to optimize each of these algorithms. Our study reveal-
s that none of these algorithms dominates the others: algorithms
based on iterative method often have higher accuracy while al-
gorithms based on random walk can be more scalable. One non-
iterative algorithm has good effectiveness and efficiency on graphs
with medium size. Thus, depending on the requirements of dif-
ferent applications, the optimal choice of algorithms differs. This
paper provides an empirical guideline for making such choices.

1. INTRODUCTION
In many applications, it is important to measure the similarity

between two vertices in a graph. Notable examples include col-
laborative filtering in recommendation systems [7, 9, 23, 1], link
prediction for web searches [17, 15], web spam detection [3], and
so on [2, 25]. Not surprisingly, many different similarity measures
have been introduced by researchers over the last decade. Among
these measures, SimRank is one of the most popular.

Calculating SimRank can be computationally expensive because
the similarity between two vertices not only depends on them-
selves, but also potentially on all other vertices in the same con-
nected component—the intuition is that two nodes are similar if
their neighbors are also similar. Therefore, there is a large body of
research that focuses on optimizing and approximating SimRank.
However, there are no systematic studies of existing algorithms,
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and it is difficult for developers to choose an algorithm for a giv-
en dataset and target accuracy. This motivates us to compare these
algorithms empirically and provide such a guideline for developers.

Taxonomy of Existing Work. Existing algorithms of com-
puting SimRank can be classified into three classes, namely, (1)
iterative method, which iterates to the fix point, (2) non-iterative
method, which solves a linear system (often with a low-rank ap-
proximation), and (3) random walk, which models the computa-
tion as random walks over the graph. These classes are logically
equivalent: (1) previous work has established the equivalency be-
tween iterative method and random walk [8], and (2) we show in
this work, theoretically, that non-iterative method is equivalent to
an approximate version of random walk (Section 3). This connec-
tion provides insights on understanding the SimRank algorithms
and explaining our empirical result. Figure 1 shows this taxonomy.

Summary of Methodology. To compare different algorithms
fairly, we re-implement all of them with the same data structure and
execution framework, and our implementations are at least as fast
as the state-of-the-art work [20]. We compare these algorithms with
multiple metrics including efficiency, effectiveness, robustness, and
scalability. We also study the impact of different graph structures
on the performance of these algorithms.

Summary of Results. We find that, across twelve real-world
datasets, iterative method, if it can finish execution, has the high-
est accuracy; however, this method often suffers from scalability
issues on large graphs. Non-iterative method algorithms based
on low-rank matrix decomposition do not support top-k query well.
Moreover, their accuracy is often lower due to the lossy low-rank
approximation. On the other hand, Par-SR, a non-iterative algo-
rithm that does not adopt the low-rank approximation but uses the
sparse matrix techniques instead, has good efficiency and effective-
ness. Algorithms based on random walk can often scale to large
graphs; however, their performance and accuracy are often sensi-
tive to the structure of the graphs. For graphs with a local sparse
structure (Section 5.1.1), TopSim-based solutions perform better;
while for graphs with a local dense structure, algorithms based on
Monte Carlo sampling, like FP-SR and TSF, often perform better.

Summary of Contributions. In this work, we compared
the existing SimRank algorithms and conducted experiments to
demonstrate their differences. Our contribution is as follows:

1. We introduced a taxonomy of different algorithms for com-
puting SimRank and classified each existing algorithm into
one of the three categories.

2. We proved theoretically the relationship between non-
iterative method and random walk and analyzed the loss
of accuracy of non-iterative method.
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Figure 1: Taxonomy of SimRank algorithms.

3. We re-implemented all of the algorithms with the same
framework and optimized each to give a fair comparison.

4. We empirically compared these algorithms on efficiency, ef-
fectiveness, robustness as well as scalability. Based on the
result, we provided suggestions on how to choose an algo-
rithm for a given dataset and target accuracy.

Overview. The rest of the paper is organized as follows: We in-
troduce the preliminaries and the taxonomy of SimRank in Sec-
tion 2 followed by the relationships of these categories in Section 3.
In Section 4, we present different algorithms under the three cate-
gories and discuss their advantages and disadvantages. Experimen-
tal results are shown in Section 5 and related work is described in
Section 6. Finally, we conclude the work in Section 7.

2. OVERVIEW OF SIMRANK
We first review the definition of SimRank and introduce the top-

k query problem. We then describe the taxonomy of the different
algorithms for computing SimRank. Table 1 summarizes some no-
tation frequently used in this section.

2.1 Problem Definition
Given a graph G(V,E), SimRank measures the similarity be-

tween two vertices using the graph structure. The intuition is that
two vertices are similar if they are connected to neighbors that are
also similar. Formally, the SimRank score between two vertices a
and b is defined as follows:

S(a, b) =


1 if a = b,

c

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

S(Ii(a), Ij(b)) if a 6= b,

(1)
where c is a damping factor between 0 and 1 and I(a) represents
all the in-neighbors of vertex a. The SimRank score between a
vertex and itself, i.e., S(a, a), is always 1. If a vertex a has no
in-neighbors, ∀b 6= a, S(a, b) = 0.

Let A be the adjacency matrix of the graph G, W the column-
normalized matrix of A, and S the similarity matrix that we want
to calculate. We can rewrite Equation 1 as

S = (c ·W ′SW ) ∨ I, (2)

where I is an identity matrix and W ′ is the transpose of W . The
operator ∨ sets the diagonal elements of the left-hand side to the
corresponding element of the right-hand side.

For many applications, it is not necessary to compute the ful-
l matrix S, and many algorithms, as well as our study, focus on

Table 1: Summary of notations.
Symbols Description
G(V,E) Graph G with vertex set V and edge set E
I(a) In-neighbors of vertex a
d Average in-degree of a graph

n,m Number of vertices and edges in a graph
S(a, b) SimRank score between vertices a and b

W
Column-normalized matrix of
the adjacency matrix of graph G

W ′ Transpose matrix of W
I Identity matrix
c Damping factor

t, T tth step and iteration number
r Rank

answering top-k queries [12, 11, 10, 5, 20, 6]1:

DEFINITION 1. (Top-k Query) Given a vertex u as the query
vertex and a constant number k, the task of answering the top-k
query returns k vertices that are most similar to u together with the
corresponding scores.

2.2 Taxonomy of SimRank Algorithms
Existing algorithms can be organized with the following taxono-

my, namely (1) iterative method, (2) non-iterative method, and
(3) random walk. We now describe these categories and leave the
detailed discussion and description of each algorithm to Section 4.

Iterative Method. Iterative method answers the SimRank
query in an iterative way following

St = (c ·W ′St−1W ) ∨ I, (3)

where t is the number of iterations. Algorithms in this category [8,
16, 26] follows Equation 3 by iterating to the fix point. To make
each iteration faster, different algorithms exploit different optimiza-
tions to reduce the redundant computation for each iteration.

Non-iterative Method. The operation ∨ in iterative method
makes it hard to apply the techniques in linear algebra, such as
the low-rank approximation of a matrix, to calculate SimRank ef-
ficiently. As a result, non-iterative method [6, 12, 27] uses a
correction matrix (1− c)I to replace the operation ∨ as follows:

S = c ·W ′SW + (1− c)I. (4)

Because Equation 4 is a linear system, we can take advantage
of decades of studies on solving linear systems to design efficien-
t approximation algorithms. However, because (1 − c)I is only
an approximation of ∨, it sometimes incurs a loss of accuracy in
computing the true SimRank score, as we discuss in Section 3.2.

Random Walk. It is also possible to interpret SimRank with cou-
pled random walks. The SimRank score S(u, v) is equal to the
expected-f meeting distance [8], which can be computed as:

S(u, v) =

∞∑
t=0

ct ·
∑
w∈V

pft(u, v, w), (5)

where c is the damping factor, V is the set of vertices, and
pft(u, v, w) is the probability of a pair of random walks Lu, Lv

satisfying the following conditions: (1) Lu and Lv start from u
and v, respectively; (2) The lengths of Lu and Lv are t; and (3) Lu

and Lv meet at w and it is the first time that they meet.
Based on Equation 5, one can calculate the expected-f meeting

distance for the SimRank computation, which treats random walks
1There are other tasks related to SimRank, e.g., all-pairs SimRank
query [8, 16, 26], single-pair SimRank query [12, 6, 10, 5, 20, 14],
range query [6], and similarity join [27, 28, 24]. In this paper, we
focus on the top-k query because of its popularity.
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as building blocks. To calculate the expected-f meeting distance,
different algorithms exploit different techniques, like enumerating
all the possible coupled random walks [11] or sampling some of
them for estimation [10, 5, 20] via efficient sampling techniques.

3. DISCUSSION OF TAXONOMY
The equivalency between iterative method and random walk

was known in the original SimRank paper [8]. We now establish
the relationship between non-iterative method and random walk.

3.1 Theoretical Analysis
From Equation 4 we have

S(u, v) = (1− c)
∞∑
t=0

ct · e′u(W ′)t ·W tev, (6)

where eu is an n× 1 all-zero vector except that the uth element is
1, and similarly for ev . We further expand Equation 6 as

S(u, v) = (1− c)
∞∑
t=0

ct ·
n∑

i=1

((W teu)′)i · (W tev)i, (7)

where ((W teu)′)i and (W tev)i denote the ith elements of vectors
(W teu)′ and W tev , respectively.

We can think of W as the transition matrix and eu and ev as the
probability vectors of two random walks Lu and Lv starting from
vertices u and v, respectively. Thus, (W teu)′i represents the prob-
ability of random walk Lu ending at vertex i at the tth step. A sim-
ilar analysis holds for (W tev)i. As a consequence, ((W teu)′)i ·
(W tev)i is exactly the probability of two random walks meeting
at vertex i at the tth step. Then

∑n
i=1((W teu)′)i · (W tev)i is the

probability of u and v meeting at all vertices at the tth step.
Comparing with Equation 5, it is clear that the value of Equa-

tion 8 is exactly the expected-f meeting distance between u and v
without the first-meeting restriction:

∞∑
t=0

ct ·
n∑

i=1

((W teu)′)i · (W tev)i (8)

Comparing Equations 7 and 8, it can be inferred that the result
of non-iterative method is scaled (by (1− c)) to that of random
walk without guaranteeing first-meeting.

3.2 Implication on Accuracy
We just showed that non-iterative method is equivalent to ran-

dom walk without the first-meeting constraint. We now analyze
the impact of this relaxation on accuracy of non-iterative method.

THEOREM 1. Assume that the accurate SimRank score be-
tween vertices u and v is S(u, v), and that the SimRank score com-
puted without the first-meeting constraint is S′(u, v), then we have:

1 ≤ S′(u, v)

S(u, v)
≤ 1

1− c .

PROOF. Let f(u, v, w) denote the contribution of two random
walks starting from u and v, respectively, and meeting at vertex w
and only at vertex w. Then according to Equation 5, we have:

f(u, v, w) =

∞∑
t=0

ct · pft(u, v, w), (9)

where c is the damping factor of SimRank and pft(u, v, w) is de-
fined in Equation 5.

Correspondingly, let f ′(u, v, w) represent the first-meeting con-
tribution plus those of later meetings from vertex w, i.e.,

f ′(u, v, w) =

∞∑
t=0

(
ct · pft(a, b, w)

+

∞∑
l=1

cl+t · pft(a, b, w) · pl:(w,w)−→(x,x)

)
, (10)

where pl:(w,w)−→(x,x) represents the probability of two random
walks that both start from vertex w meeting at any vertex x at the
lth step.

Combining Equations 9 and 10, we have:

f ′(u, v, w) = f(u, v, w) ·
(

1 +

∞∑
l=1

clpl:(w,w)−→(x,x)

)
,

i.e.,
f ′(u, v, w)

f(u, v, w)
= 1 +

∞∑
l=1

clpl:(w,w)−→(x,x). (11)

Considering that pl:(w,w)−→(x,x) ≤ 1, we have:

f ′(u, v, w)

f(u, v, w)
≤ 1 +

∞∑
l=1

cl =
1

1− c . (12)

Furthermore, we have the following inequality straightforwardly
following from Equation 11:

f ′(u, v, w)

f(u, v, w)
≥ 1. (13)

According to the definition of f(u, v, w) and f ′(u, v, w), we
have:

S′(u, v)

S(u, v)
=

∑n
w=1 f

′(u, v, w)∑n
w=1 f(u, v, w)

. (14)

Combining Equations 12, 13, and 14, we have:

1 ≤ S′(u, v)

S(u, v)
≤ 1

1− c .

4. ALGORITHM ANALYSIS
In this section, we elaborate on the state-of-the-art algorithms

that compute SimRank according to the taxonomy in Figure 1.

4.1 Iterative Method-based Algorithms
The key for algorithms based on iterative method is to reduce

the repetitive computation during the iterations. The accuracy of
iterative algorithms depends on the number of iterations. Theoreti-
cally, the result is accurate asymptotically.

4.1.1 Naive-SR
Naive-SR [8] is a naive iterative solution following Equation 3.

It computes the similarity between all vertex pairs with O(Td2n2)
time and O(n2) space cost, where d is the average in-degree. To
speed up, Naive-SR also provides some pruning skills by setting
the SimRank score between two vertices far apart to be zero.

4.1.2 Partial-SR
Partial-SR [16] is an improved version of Naive-SR. Partial-SR

stores the intermediate results, namely partial sums, to avoid some
redundant computation.

Redundant computations exist in each iteration. As shown in

S(a, b) =
1

I(a) · I(b)

∑
x∈I(a)

∑
y∈I(b)

S(x, y)

︸ ︷︷ ︸
PartialI(b)(x)

, (15)

the part denoted by PartialI(b)(x) is computed repeatedly whenev-
er S(a, b) is computed, where vertex x is an in-neighbor of vertex
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a. For example, as shown in Figure 2, vertex a and vertex b have
a common in-neighbor c. To get S(a, p) and S(b, p) for a given
vertex p, PartialI(p)(c) is computed twice.

Partial-SR stores all the partial sums that have been computed
in an iteration to accelerate the computation. Therefore, Partial-SR
improves the computation cost of SimRank from O(Td2n2) time
to O(Tdn2) with additional O(n) space cost.

Discussion. Two optimizations are further applied for a speed-
up. First, only the upper triangular of the similarity matrix S is
computed due to its symmetry. This reduces the processing time
by half. Second, not all partial sums are computed in each itera-
tion. When computing S(a, ∗), we compute only part of the partial
sums, i.e., PartialI(a)(y) with y belonging to {I(b)|b < a}. This
also helps reduce the processing time.

a b

c d e f

Figure 2: An example graph for Partial-SR and OIP-DMST.

4.1.3 OIP-DMST
OIP-DMST [26] eliminates duplicate computation in a finer

granularity than Partial-SR. The basic idea is to change the com-
putation order of partial sums and use partial sums of a vertex to
compute the others if these two vertices share many common in-
neighbors. Next, we discuss the repetitive computation in partial
sums and introduce how to determine the computation order.

Duplicate summations exist when computing partial sums. For
example, in Figure 2, vertex a and vertex b have three com-
mon in-neighbors, {c, d, e}. When computing PartialI(a)(p) and
PartialI(b)(p) with respect to a given vertex p, Partial-SR com-
putes them separately. However, OIP-DMST uses PartialI(b)(p)
to compute PartialI(a)(p) as PartialI(a)(p) = PartialI(b)(p) +
S(f, p), which eliminates two additions.

A cost graph GS is constructed to determine the computation
order of partial sums. Each vertex in GS denotes a partial sum and
each edge represents the cost of using one partial sum to compute
the other. Then the minimum spanning tree of GS describes the
computation order of partial sums in OIP-DMST. As a result, OIP-
DMST needs O(dn2) time to generate the cost graph and O(n2)
time to find the minimum spanning tree.

Discussion. Like Partial-SR, only the upper triangular similar-
ity matrix is computed in OIP-DMST. However, this cannot ac-
celerate the computation as much as it does for Partial-SR. This
is because the computations of partial sums and SimRank scores
in OIP-DMST are strictly separated. All the partial sums for ver-
tex u have to be computed before getting any SimRank score with
respect to u. Furthermore, the partial sums are interrelated since
some of them are needed to compute others. As a result, all the
partial sums have to be computed.

4.1.4 Summary
The main optimization of iterative method lies in reusing in-

termediate results. Partial-SR and OIP-DMST calculate SimRank
faster compared to Naive-SR by storing the partial sums. However,
there still exist two shortcomings in algorithms based on iterative
method. One is that the time complexity of these algorithms is
at least quadratic and they cannot process large-scale graphs effi-
ciently. The other is that these algorithms cannot get part of the

SimRank scores without computing the whole similarity matrix.
Thus, when handling a single-pair query or a top-k query, iterative
algorithms have to compute all SimRank scores for indexing.

4.2 Non-Iterative Method-based Algorithms
The basic idea of non-iterative method-based algorithms is to

use linear algebra techniques, such as the low-rank approximation
of a matrix and sparse matrix multiplication, to solve Equation 4.

4.2.1 NI-Sim
NI-Sim [12] was the first non-iterative algorithm to compute

SimRank. It uses two operators, the Kronecker product and the
vectorization operator, to extract the similarity matrix and further,
it uses the low-rank approximation to approximate SimRank.

Preprocessing phase. Based on the Kronecker product and the
vectorization operator, Equation 4 can be rewritten as:

vec(S) = (1− c)(I − c(W ′ ⊗W ′))−1 vec(I).

Moreover, NI-Sim performs singular value decomposition (SVD)
on matrixW ′ to get an approximation. LetW ′ = UΣV , according
to the Woodbury formula,2 then S can be computed as

vec(S) = (1− c)(vec(I) + cKuΛVr),

whereKu = U⊗U , Λ = (K−1
Σ −cKvu)−1, and Vr = Kv vec(I).

Kvu = KvKu. As a result, matrices Ku, Λ, and Vr are stored as
the index for querying.

Querying phase. In this phase, NI-Sim uses the matrices stored
in the index to answer the query as

S(i, j) = (1− c)(I(i, j) + cVlVr),

where Vl can be computed as Vl = Ku((i− 1)n+ j, :)Λ.

Discussion. NI-Sim computes a single-pair SimRank query in
O(r4) time withO(n2r2 +r4) space. The accuracy loss of NI-Sim
comes from the low-rank approximation of a matrix and from ig-
noring the first-meeting constraint. However, there are three short-
comings in this algorithm. First, the expensive index space require-
ment and the high complexity of SVD have restricted the applica-
tion scope of NI-Sim to small graphs. Second, SVD cannot pre-
serve the relative order of SimRank scores because it focuses on
minimizing the absolute error while SimRank scores are close to
each other empirically. Third, there is not an error bound for NI-
Sim for common cases.

4.2.2 SimMat
SimMat [6] is another non-iterative algorithm that computes

SimRank. It does so based on the Sylvester equation3 and low-rank
approximation of a matrix.

Preprocessing phase. SimMat transforms Equation 4 into the
form of the Sylvester equation by multiplying by W−1 on the left:

1

c
(W ′)−1S − SW =

1− c
c

(W ′)−1. (16)

Then an eigen decomposition is performed on matrix W :
W = PDP−1,

whereD is the diagonal matrix with eigenvalues as the diagonal el-
ements and P is composed of the corresponding normalized eigen-
vectors. With some equivalence transformations, the result matrix
S is computed as
2http://mathworld.wolfram.com/WoodburyFormula.html
3https://en.wikipedia.org/wiki/Sylvester equation
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S = (P ′)−1XP−1,

where X can be computed via solving the following equation:
1

c
D−1X −XD =

1− c
c

D−1P ′P. (17)

To improve the efficiency further, SimMate and SimMats are
proposed via low-rank approximation techniques. For example,
SimMats performs SVD on matrix P−1 and stores the intermediate
matrix as the index.

Querying phase. SimMat uses the index to compute the Sim-
Rank scores. Furthermore, SimMat uses efficient pruning through
the Cauchy–Schwarz inequality for answering the top-k query.

Discussion. Likes NI-Sim, SimMat loses accuracy because of
the low-rank approximation and not guaranteeing first-meeting.

SimMat can be applied to limited real-world graphs. This is be-
cause when transforming the initial SimRank formula into the form
of the Sylvester equation in Equation 16 and computing the inverse
matrix ofD following Equation 17, matricesW andD are required
to be reversible, which is hard to satisfy in real-world graphs.

4.2.3 Par-SR
Par-SR [27] interprets SimRank as a linearized formula follow-

ing Equation 6. The most important part of Par-SR is that it answers
a top-k query without computing the whole similarity matrix. Sim-
Rank scores with respect to a given vertex u are computed as:

[ST ]∗,u = (1− c)
T∑

t=0

(W ′)t ·W teu. (18)

To reduce further the computational cost of Equation 18, Par-
SR uses the seed germination model [27] and successfully re-
duces the number of duplicate computations in each iteration, and
thus achieves O(Tm) time and O(Tn) space for answering a
top-k query. Furthermore, PrunPar-SR can reduce unnecessary
edge accesses. It uses sparse matrix multiplication technique to
reduce the number of accessing irrelevant vertices and achieves
O(min{Tm, d2T }) time efficiency, where d is the average in-
degree. In the following, Par-SR means PrunPar-SR for simplicity.

Discussion. Par-SR can be viewed as a special kind of random
walk-based algorithms according to the analysis in Section 3. It us-
es matrix–vector multiplication to simulate the random walks and
naturally groups the random walks with the same end vertices be-
cause a vector is inherently a hash map.

4.2.4 Summary
Non-iterative method uses (1− c)I to approximate the diago-

nal correction matrix and breaks the holistic nature of the SimRank
computation. However, SimMat, NI-Sim, and Par-SR all suffer
from not guaranteeing first-meeting as a consequence. Moreover,
different non-iterative algorithms lose accuracy from their own op-
timization techniques, such as the low-rank approximation of a ma-
trix and the limited number of iterations.

4.3 Random Walk-based Algorithms
Algorithms based on random walk interpret the similarity as

the expected-f meeting distance of two different vertices. These
algorithms fall into two categories: (1) Monte Carlo, which sam-
ples some coupled random walks to estimate the SimRank scores
by a Monte Carlo simulation, like KM-SR [10], FP-SR [5], and TS-
F [20], and (2) path enumeration, which enumerates all the possible
coupled random walks, like TopSim [11].

4.3.1 KM-SR
KM-SR [10] is based on two observations. First, SimRank s-

cores can be approximated by a linear form in Equation 6. Second,
W teu can be thought of as the probability vector of vertex u end-
ing at each vertex after randomly walking t steps. Furthermore, the
probability vector can be computed via

W teu = E[eu(t)], (19)

by a Monte Carlo simulation, where E[eu(t)] is an n × 1 vector
with each element representing the expected probability of u end-
ing at the corresponding vertex at the tth step.

Combining these two techniques, KM-SR handles the top-k
query by a two-phase process.

Preprocessing phase. The preprocessing phase of KM-SR
consists of two parts, candidate selection and upper bound com-
putation. The intuition of candidate selection is that the vertices
frequently reachable from vertex u are probably the points where u
meets other vertices. Following this idea, KM-SR uses Monte Car-
lo simulation to select frequently reachable vertices for each vertex
u as follows.

For each vertex u, repeat the following procedure P times:
1. Sample a random walk W0 with length T from u, denoted

by {w01, w02, . . . , w0T }.
2. Sample Q random walks from u with length T , namely,
W1, . . . ,WQ.

3. For each vertex v in W0, KM-SR adds it to the candidate
list if there are at least two random walks ending at v at the
corresponding step.

KM-SR stores all the frequently reachable vertices for each ver-
tex as the index. The space and time needed are both O(n). Fur-
thermore, in the upper bound computation process, KM-SR stores
the norm of the probability vector for each vertex to filter the Sim-
Rank scores when querying.

Querying phase. Given a top-k query with respect to vertex u,
KM-SR first enumerates the vertices that have common frequent-
ly reachable vertices with u via the index. Then it computes the
similarity between u and the enumerated vertices via Equations 6
and 19. Finally, the top-k similar vertices are picked as the answer.

Discussion. The candidate selection in the preprocessing phase
is too harsh and there are few vertices in the candidate list. Suppose
that the random walk starts from u and ends at vertex w0i with
probability pi, then the probability of at least two random walks
ending at w0i can be computed as:

1− (1− pi)Q −Q · pi · (1− pi)Q−1.

Since there are T end vertices in random walk W0 and the pro-
cess is repeated P times, the expected number of candidates for
vertex u is:

P

T∑
i=1

(1− (1− pi)Q −Q · pi · (1− pi)Q−1). (20)

Furthermore, the probability of random walkW0 ending at a cer-
tain vertex, pi, is exponential to the step of the random walk, which
can be approximated by the average in-degree of vertices on the
path of random walk W0 as

pi ≈
(

1

d

)i

,

where d is the average in-degree. When the number of steps in-
creases, pi converges to zero. As a result, the value of Equation 20
is small. With the parameters set in the original work, i.e., P = 10,
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T = 11, and Q = 5, only a few vertices are preserved, mostly less
than ten for each vertex.

4.3.2 FP-SR
FP-SR [5] uses the FPG data structure to store compactly the

random walks sampled via Monte Carlo simulation as well as the
distance at which each two random walks meet for the first time.
In the following, the FPG data structure is introduced and the de-
tailed operations during the preprocessing and querying phases are
provided.

FPG. An FPG organizes in a compact way one random walk with
length T for each vertex together with the distance where each two
random walks meet for the first time. FP-SR assumes that once two
random walks meet, they walk together. A good property of FPG is
that if the similarity of vertex pair (u, v) is not zero, then these two
vertices must be in the same branch of an FPG, which significantly
improves the search efficiency.

Preprocessing phase. FP-SR builds the FPGs as the index.
When building an FPG, FP-SR generates one uniform edge ei for
each vertex independently and extends random walks that have the
same last vertex iwith edge ei. This not only improves the indexing
efficiency but also ensures the independence until the first meeting.
The space needed is O(nRg).

Querying phase. Given a top-k query of vertex u, FP-SR needs
to scan the branches in the FPGs that contain u and calculates Sim-
Rank scores with the stored distance where u meets others. The
graph connectivity of FPGs helps to filter out vertices that rarely
meet u.

Discussion. FP-SR answers a top-k query efficiently because it
does not need to calculate the distance where the query vertex meets
others when querying. The distance is also stored in FPGs. More-
over, the graph connectivity of a FPG helps to prune the vertices
that never meet the query vertex.

FP-SR has two shortcomings. One is that it is hard for FP-SR to
scale to large graphs for high accuracy since one FPG yields only
one meeting chance for a vertex pair. If high accuracy is required,
the space cost is expensive. The other one is that two random walks
are dependent in a top-k query because FP-SR assumes that two
random walks walk together after their first meeting. Although this
reduces the index space, the error bound is hard to give.

4.3.3 TSF
TSF [20] employs Monte Carlo sampling techniques to estimate

SimRank scores following random walk. It uses the novel one-
way-graph data structure to store the random walks efficiently. In
the following, we first describe the one-way-graph data structure
and then introduce the preprocessing and querying phases of TSF.

One-way graph. A one-way graph is a novel compact data
structure that contains a random walk for each vertex. It is a graph
satisfying that each vertex has at most one outgoing edge, which
naturally meets the need of random walks that each vertex random-
ly chooses an outgoing edge.

Preprocessing phase. TSF samplesRg one-way graphs as the
index, where each one-way graph contains exactly n vertices and
no more than n edges. The time and space needed are O(nRg).

Querying phase. When answering a top-k query with respect
to vertex u, TSF repeats the following process for each indexed
one-way graph: (1) TSF samples Rq random walks starting from u
and extracts the meeting vertices and (2) for each meeting vertex v,
it expands on that one-way graph to find vertex u′ that meets u at

vertex v. The SimRank scores are estimated from these meetings.
The connectivity of one-way graphs also helps to filter out vertices
that are rarely reached by vertex u.

Discussion. TSF uses the two-phase sampling technique to cope
with a SimRank query. Each one-way graph is reused Rq times,
thus, it can achieve higher accuracy with limited index space by re-
sampling more random walks when querying. The graph connec-
tivity of one-way graphs can help to filter out unnecessary vertices
when querying top-k as FPGs do in FP-SR. However, the reuse
of one-way graphs also leads to a dependence among the random
walks for a top-k query.

4.3.4 TopSim
TopSim [11] avoids the global access of the graph because it

computes SimRank via enumerating the random walks within a
short distance.

For a top-k query of vertex v, TopSim repeats the following pro-
cedure T times: (1) It enumerates all the vertices that reach v at the
tth ∈ [1, T ] step and saves these vertices in the meeting point list
Ut and (2) for each meeting point u in Ut, TopSim enumerates the
vertices v′ that are reachable from u at the tth step. Intuitively, v′

and v meet at vertex u in exactly t steps, which contributes to the
similarity between vertex v and v′. After T steps, all the SimRank
scores with respect to vertex v are computed.

During the traversal of similarity paths, there exist some repeated
searches on the paths and TopSim-SM is proposed to merge such
similarity paths. For example, path {a −→ b −→ c −→ d} and path
{a −→ e −→ c −→ d} can be combined as {a −→ b/e −→ c −→ d}. As
a result, one traversal on edge {c −→ d} can be eliminated.

Furthermore, two heuristic solutions are provided for higher effi-
ciency by sacrificing effectiveness, i.e., TrunTopSim and PrioTop-
Sim. TrunTopSim sets two thresholds, h and η, to truncate the
high-degree vertices in the set of meeting points Ut when expand-
ing random walks. PrioTopSim applies a priority pool to select the
top H meeting point in Ut for answering a top-k query in a certain
time.

Discussion. TopSim-SM handles a top-k query inO(d2T ) time,
where d is the average in-degree and T is the length of the ran-
dom walk. As a result, TopSim-based algorithms can process large
graphs, since the efficiency does not rely on the scale of graphs.
However, they are sensitive to the graph structure. This is because
TopSim-based solutions enumerate all or most of the random walks
within a short distance. As a result, it runs fast on sparse graphs but
slowly on dense graphs. TopSim-based algorithms loses accuracy
because the length of random walks is short.

4.3.5 Summary
The key to Monte Carlo sampling-based algorithms, like FP-SR,

KM-SR and TSF, is to sample efficiently these coupled random
walks when querying or to store the random walks efficiently while
preprocessing. They lose efficiency due to the limited samples used
for estimating the expected-f meeting distance. Algorithms based
on path enumeration, like TopSim, focus on how to reduce the num-
ber of random walks efficiently. The accuracy loss comes from the
short length of the random walks.

5. EXPERIMENTAL ANALYSIS
We analyze the pros and cons of each algorithm with extensive

experiments. In particular, each algorithm is evaluated via effec-
tiveness, efficiency, robustness, and scalability (defined in Section
5.1.2). In the following, we first introduce the experimental envi-
ronment, then both the effectiveness and efficiency are compared
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according to the three categories; finally, the robustness and the
scalability of these algorithms are reported.

5.1 Experimental Environment
All experiments are conducted on a machine powered by two X-

eon(R) E5530@2.40GHz CPUs and 96GB memory, under Ubun-
tu 14.04.1 LTS. All the algorithms are implemented in C++ and
compiled by g++ 4.8.4 with the -O3 option. The low-rank approx-
imation of a matrix is computed via Armadillo [18], a C++ linear
algebra library.

5.1.1 Datasets
Experiments are conducted on both synthetic and real-world

datasets. The real-world datasets consist of small, medium, and
large datasets as shown in Table 2. The synthetic datasets are gen-
erated via networkX4.

Table 2: Dataset statistics.
Graph V E d

Tuning

BA1 1.0k 5.0k 5.0
BA2 1.0k 10.0k 10.0
BA3 5.0k 50.0k 10.0
ER1 1.0k 5.0k 5.0
ER2 5.0k 50.0k 10.0

Small

AirLine (AL) 0.5k 72.0k 157.8
ODLIS.NET (OD) 2.9k 18.2k 6.3
CA-GRQC (CG) 5.2k 29.0k 5.5
P2p-Gnutella08 (PG) 6.3k 20.8k 3.3
WikiVote (WV) 7.1k 103.7k 14.6

Medium
webNotreDame (ND) 0.3M 1.5M 4.6
webBerkStan (BS) 0.7M 7.6M 11.1
webGoogle (WG) 0.9M 5.1M 5.8

Large

LiveJournal (LJ) 4.8M 69.0M 14.2
wikipedia-en (WP) 25.9M 601.0M 21.1
it-2004 (IT) 41.3M 1150.7M 27.9
twitter (TW) 41.7M 1468.4M 35.3

In this paper, we further classify these graphs into two types, lo-
cal sparse and local dense ones. If a small proportion of the vertices
in a graph take up most of the edges, then this graph is a local dense
one. For example, WV, LJ, and TW are local dense graphs and the
rest of the real-world datasets in Table 2 are local sparse graphs.
Take WV as an example. More than 60% of the vertices have ze-
ro in-degree in WV, and as a result, the rest of the vertices form
a dense subgraph. For simplicity, we use “dense” and “sparse” to
represent “local dense” and “local sparse” in the rest of the paper.

5.1.2 Evaluation Metrics
Effectiveness, efficiency, robustness, and scalability are used to

evaluate each algorithm.

Effectiveness. For effectiveness, Precision, normalized dis-
counted cumulative gain (NDCG), and average difference (AvgDif-
f) are used to evaluate the quality of the returned top-k similar ver-
tices in a top-k query. In the following, these criteria are intro-
duced.

Suppose that the set of top-k similar vertices with respect to u
returned by the accurate algorithm and the approximate algorith-
m are {TopK} and {TopK′}, respectively. The corresponding
scores are S(u, v) and S′(u, v). Precision@k is defined as

Precision@k =
#|{TopK} ∩ {TopK′}|

k
,

where #|{TopK}∩{TopK′}| denotes the number of elements in
the set {TopK} ∩ {TopK′}. NDCG@k is

4http://networkx.github.io/

NDCG@k =
1

Zk

k∑
i=1

2Si − 1

log2(i+ 1)
,

where Si is the exact SimRank score of vertex u at rank i in the
returned top-k vertices and Zk is a normalization factor which en-
sures that the NDCG@k of an accurate solution is 1. AvgDiff@k
is defined as

AvgDiff@k =

∑
v∈{TopK}∩{TopK′} |S(u, v)− S′(u, v)|

#|{TopK} ∩ {TopK′}| ,

where |S(u, v) − S′(u, v)| denotes the absolute difference and
#|{TopK} ∩ {TopK′}| represents the number of elements in the
intersection of the two sets.

Algorithms have good effectiveness if they have high Precision
and NDCG and low AvgDiff. We set k as 50 for these criteria fol-
lowing the analysis in Section 5.2.2. For simplicity, Precision, ND-
CG, and AvgDiff are used to represent Precision@50, NDCG@50
and AvgDiff@50 in the rest of the paper, respectively.

Efficiency. Efficiency describes the speed of answering Sim-
Rank queries. In particular, the preprocessing time and query time
for each algorithm are reported.

Robustness. Top-k queries for an algorithm with respect to ver-
tices with different local structures have different performance. Ro-
bustness is used to describe how these queries differ in terms of ef-
ficiency. If an algorithm answers top-k queries on all vertices with
the same time cost, this algorithm is the most robust.

Scalability. For scalability, graphs with a different number of
vertices are used to demonstrate how the efficiency of these algo-
rithms change when the graph scale increases.

5.1.3 Parameter Setting
Of the ten algorithms we studied, there are five algorithms (NI-

Sim, SimMat, KM-SR, FP-SR and TSF) having hyperparameters.
Different settings of the hyperparameters, as we will show in Sec-
tion 5.2, often lead to different effectiveness and efficiency. For
fairness, we conduct careful parameter tuning to choose the most
appropriate parameters for each algorithm following the state-of-
the-arts [20, 12]: varying each parameter on several small graphs
and use it for large graphs. If the original paper hardcoded the val-
ue of a hyperparameter with justification, we follow their settings.
For example, for TopSim, we set T = 3 [11]. For Monte Carlo
sampling-based algorithms and NI-Sim, graphs with different local
structures and different scales are used for tuning according to the
analyses of algorithms in Section 4. Based on the tunning results in
Section 5.2.1, we use the parameters for each algorithms shown in
Table 3. For hyperparameters that are used to define the objective,
we set them as c = 0.8 and T = 10.

Table 3: Parameter values used in our study.
TSF FP-SR KM-SR NI-Sim

Rg = 300, Rq = 40 R = 500 R = 300 r = 30

5.1.4 Experiment Clarification
Some experiments could not be carried out due to the high time

or space cost. The corresponding reasons for those experiments
not being conducted is presented in Table 4. For example, the ro-
bustness of iterative algorithms was not checked because they are
robust by definition; the effectiveness on medium and large dataset-
s was not evaluated since the accurate SimRank algorithms, which
are used to compute effectiveness, ran out of memory, etc.
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Figure 3: Precision of FP-SR, KM-SR, TSF and NI-Sim with various parameter settings on five datasets.

5 10 15 20 25 30 35 40 45 50
k

0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
re

ci
si

on

(a) Precision

5 10 15 20 25 30 35 40 45 50
k

0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
D

C
G

(b) NDCG

5 10 15 20 25 30 35 40 45 50
k

0.000
0.005
0.010
0.015
0.020
0.025
0.030

A
vg

D
if

f

NI-Sim
TopSim-SM
TrunTopSim
PrioTopSim
TSF
KM-SR
FP-SR
Par-SR

(c) AvgDiff
Figure 4: Effectiveness of different algorithms with various k for top-k queries on WikiVote.

Table 4: Experiments we omit in our study and the reasons.
Experiments not conducted Reasons
Efficiency of iterative algorithms on
medium and large datasets

Out of memory

Robustness of iterative algorithms Robust by definition
Scalability of iterative algorithms Out of memory
Effectiveness on medium and large
datasets

Cannot be computed because iterative al-
gorithms, which are used for computing
effectiveness, run out of memory

NI-Sim on medium and large datasets Out of memory
Robustness of NI-Sim Robust by definition
Scalability of NI-Sim Out of memory

Furthermore, the reported query time and effectiveness of each
algorithm on each dataset are estimated from 100 queries via s-
tratified sampling according to the vertex in-degree if there is no
specific clarifications.

5.2 Parameter Sensitivity
To ensure the fairness of our comparison among different algo-

rithms, we present the sensitivity analyses of the parameters used
in our experiment.

5.2.1 Sensitivity of Parameters in Algorithms
As discussed in Section 5.1.3, we use several graphs with dif-

ferent local structures and scales to tune FP-SR, KM-SR, TSF and
NI-Sim. The graphs are shown in Table 2. In particular, ER1 and
ER2 are generated based on the Erdos–Renyi model, in which all
the pairs of vertices are connected randomly with a given probabil-
ity. BA1, BA2, and BA3 are based on the Barabasi–Albert model,
which has a similar characteristic to real-world social networks.
The parameter sensitivity of these algorithms is shown in Figure 3.
Only the result of Precision is presented but it is similar for NDCG.
Note that there are two parameters for TSF (Rg andRq) and we set
Rq as 40 and vary Rg following the original paper [20].

Figure 3 shows the parameter sensitivity of FP-SR, KM-SR, TS-
F, and NI-Sim on five different graphs. Not surprisingly, all algo-
rithms have higher Precision when the sampling number or the rank
of NI-Sim increases. We choose the most appropriate parameters
for each algorithm by a tradeoff between effectiveness and efficien-
cy. For example, R for FP-SR is set as 500 since the Precision of
FP-SR increases more slowly after 500. Similarly for KM-SR and
TSF in Figure 3(b) and 3(c), we set Rg for TSF and R for KM-
SR to 300. For NI-Sim, the rank is set to 30. It can be inferred
that Precision increases more slowly after 30. Another reason not

to choose a higher rank is that NI-Sim answers a top-k query in
O(nr4) time. A higher rank incurs a higher efficiency loss. The
resulting parameters from the experiments are shown in Table 3.

We find that, varying each hyperparameter has significant impact
on Precision for all algorithms. Therefore, for all algorithms with
hyperparameters, we recommend the users to tune them on small
graphs with similar local structures. In the rest of the paper, we use
the parameters tuned here by graphs with different local structures,
which can serve as a common case for comparison.

5.2.2 Sensitivity of k in Top-k Queries
Previous works [11, 20, 27, 12] use different k values in met-

rics like Precision@k, NDCG@k, and AvgDiff@k to evaluate the
effectivenss of a SimRank algorithm. For fairness, we design an ex-
periment on two real-world datasets, WV and PG, to demonstrate
how these metrics in the different algorithms that compute Sim-
Rank would change when k varies. We vary k from 5 to 50 in steps
of 5. The result for WV is shown in Figure 4 while that for PG is
not presented because it is similar.

Figure 4 indicates that the relative order of Precision, NDCG,
and AvgDiff of each algorithm is well preserved as the parameter k
increases. A special phenomenon is that the AvgDiff of Par-SR and
KM-SR has a descending trend when k increases. This is because
both Par-SR and KM-SR ignore the first-meeting constraint. In the
following, we consider Par-SR in the explanation.

Given a top-k query with respect to vertex u, suppose that the
set of top-k similar vertices returned by the accurate algorithm and
Par-SR are {TopK} and {TopK′}, respectively. The score re-
turned by the accurate solution is S(u, v). Assume the accurate s-
core computed without guaranteeing first-meeting is S′(u, v), then
the score returned by Par-SR can be represented as (1− c)S′(u, v)
according to the discussion in Section 3.

With the above notations, AvgDiff@k of Par-SR is computed as

AvgDiff@k =

∑
v∈{TopK}∩{TopK′} |(1− c)S

′(u, v)− S(u, v)|
#|{TopK} ∩ {TopK′}| .

Furthermore, considering that S′(u, v) and S(u, v) are close to
each other practically due to our empirical observation, AvgDiff@k
of Par-SR can be further approximated by: |(1 − c)S′(u, v) −
S(u, v)| ≈ c · S(u,v), i.e.,

AvgDiff@k =

∑
v∈{TopK}∩{TopK′} c · S(u, v)

#|{TopK} ∩ {TopK′}| ,
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Figure 5: Results for non-iterative algorithms. Precision, NDCG, and AvgDiff describe the effectiveness while query time indicates
the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.

where c · S(u, v) means the multiplication of c and S(u, v). When
k increases, more vertices with smaller SimRank scores are includ-
ed in the answer. However, AvgDiff@k is the average of these
differences, so AvgDiff@k decreases.

5.3 Effectiveness and Efficiency
In this section, the algorithms in different categories are com-

pared separately. Both efficiency and effectiveness are evaluated
for each SimRank algorithm.

5.3.1 Comparison of Iterative Algorithms
The efficiency of Partial-SR and OIP-DMST, together with the

corresponding optimized versions, namely, Opt-Partial-SR and
Opt-OIP-DMST, which only compute the upper triangular part of
the similarity matrix, are presented. The result of Naive-SR is not
presented for simplicity since Naive-SR consumes more time than
Partial-SR and OIP-DMST theoretically and experimentally. The
results are shown in Figure 6, where the run time of an algorithm
refers to the computation time for all-pairs SimRank. Effective-
ness is not considered because iterative algorithms produce exact
solutions.
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Figure 6: Run time (seconds) of iterative algorithms.

Figure 6 shows the efficiency of iterative algorithms on the five
datasets. First, OIP-DMST performs better than Partial-SR in most
cases since OIP-DMST reduces the amount of redundant compu-
tation in a finer granularity. For example, Partial-SR needs 130
seconds to finish the computation on WV while OIP-DMST needs
104 seconds. The reason why OIP-DMST is a little slower than
Partial-SR on PG is that PG is a sparse graph and there is little
redundant computation for partial sums, while OIP-DMST needs
extra time to determine the computation order of partial sums. Sec-
ond, Opt-Partial-SR is nearly twice as fast as Partial-SR because
half of the computation of the partial sums in Opt-Partial-SR are
avoided. On CG, for example, Partial-SR needs 34 seconds and
Opt-Partial-SR needs 18 seconds. Third, Opt-OIP-DMST does not
speed up as much as Opt-Partial-SR does. This is because the com-
putation of partial sums and SimRank values are separated. All
the partial sums have to be computed before getting any SimRank
scores. Finally, the efficiency of Opt-OIP-DMST is not always bet-
ter than Opt-Partial-SR due to the different degree of improvement
from the optimization of computing half of the similarity matrix.
For example, Opt-OIP-DMST is faster than Opt-Partial-SR on AL
but slower on WV.

5.3.2 Comparison of Non-iterative Algorithms
Effectiveness and efficiency of the non-iterative algorithms are

evaluated with five small datasets. Specifically, comparisons be-
tween NI-Sim and Par-SR are reported since SimMat cannot run
on these datasets due to the irreversibility of the transition matrix
W . The results are shown in Figure 5.

Effectiveness. Figures 5(a) and 5(b) show that Par-SR outper-
forms NI-Sim in terms of Precision and NDCG. This is because
the accuracy of Par-SR is influenced by the number of iterations
and SimRank is accurate enough with ten iterations [10]. Howev-
er, NI-Sim loses accuracy because it uses SVD to approximate the
real SimRank scores but SVD fails to preserve the relative order of
estimated values.

Figure 5(c) indicates that NI-Sim does not always perform better
than Par-SR on AvgDiff. For example, AvgDiff of NI-Sim on WV
and AL is better than that of Par-SR but worse on OD and CG.
This is because, although both Par-SR and NI-Sim are based on
non-iterative method, which ignores the first-meeting restriction,
NI-Sim adopts SVD to compute SimRank. Thus, the NI-Sim result
fluctuates around the “accurate” SimRank scores computed without
guaranteeing first-meeting. As a result, the AvgDiff of NI-Sim is
sometimes better than Par-SR, sometimes worse.

Efficiency. Figure 5(d) indicates that Par-SR is much faster than
NI-Sim. For instance, Par-SR takes 0.005 seconds for a top-k query
while NI-Sim needs 1.744 seconds on PG. This is because, al-
though the time complexity for answering a top-k query in NI-Sim
and Par-SR is linear for both, the constant factor of NI-Sim is much
larger than that of Par-SR.

Summary. Par-SR outperforms NI-Sim in terms of effectiveness
and efficiency. This also indicates that the techniques based on
matrix decomposition do not work well with SimRank problems.

5.3.3 Comparison of Random Walk-Based Algo-
rithms

In this section, a comparison among algorithms which are based
on random walk is conducted. Par-SR is also compared since it
can be viewed as a special kind of algorithm based on random
walk as discussed in Section 3 and it outperforms the other two
non-iterative algorithms.

The datasets used here are five small datasets and three medium
datasets. We run these algorithms on all of the small datasets but
only the results for WV and PG are presented, as shown in Figures
7 and 8. For medium datasets, only the efficiency is presented in
Tables 5 and 6. The effectiveness cannot be computed because
accurate SimRank scores cannot be estimated for these medium
graphs as we claimed in Table 4.

Effectiveness. TopSim-based algorithms perform better on ef-
fectiveness than Monte Carlo sampling-based algorithms with lim-
ited samples. For example, the Precision and the NDCG of TopSim
based algorithms are higher than those of TSF, FP-SR, or KM-SR
on WV, as shown in Figures 7(a) and 7(b). This is because the
accuracy loss of TopSim-based algorithms comes from the limited
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Figure 7: Results for algorithms based on random walk on WikiVote. Precision, NDCG, and AvgDiff describe the effectiveness
while query time indicates the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.
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Figure 8: Results for algorithms based on random walk on P2p-Gnutella08. Precision, NDCG, and AvgDiff describe the effectiveness
while query time indicates the efficiency. The dotted lines represent the exact solutions. The AvgDiff of exact solutions is 0.

length of the random walks and SimRank converges fast in a short
distance. However, the accuracy of Monte Carlo sampling-based
algorithms like TSF is restricted by the number of samples used.

Monte Carlo sampling-based algorithms perform better on local
sparse graphs than on local dense graphs. For example, the Pre-
cision of FP-SR on WV is lower than that on PG, 0.57 and 0.89,
respectively, as shown in Figures 7(a) and 8(a). WV is a local dense
graph and it incurs more paths starting from the query vertex than
PG. As a result, the original number of sampled random walks can-
not characterize well all the paths in WV. The number of samples
has to increase if a higher accuracy on WV is needed.

TSF performs better than FP-SR on dense graphs. For example,
the Precision of TSF on WV is 0.83, much higher than that of FP-
SR, 0.57, as shown in Figure 7(a). When answering a top-k query,
FP-SR scans the indexed FPGs while TSF resamples Rq random
walks for each indexed one-way graph. Thus, the number of cou-
pled random walks used in TSF is much higher than that of FP-SR.

Algorithms not guaranteeing first-meeting have poor AvgDif-
f but good Precision and NDCG. For example, Par-SR has poor
AvgDiff on WV and PG, about 0.01 and 0.06, respectively, but it
has good Precision and NDCG, as shown in Figures 7 and 8. This is
because the results for Par-SR are scaled to the accurate SimRank
scores without guaranteeing first-meeting by a factor of (1− c), as
discussed in Section 3. Therefore, the SimRank score is not accu-
rate but the relative order is preserved.

Efficiency. The efficiency of TopSim-based algorithms is sensi-
tive to graph density. TopSim-SM performs poorly for dense graph-
s. For example, a single query for TopSim-SM on WV takes 16
seconds while it needs only 0.001 seconds on PG, as shown in Fig-
ures 7(d) and 8(d). This is because TopSim-based algorithms rely
heavily on local graph structures. They enumerate all the random
walks like TopSim-SM. TrunTopSim and PrioTopSim improve the
efficiency by pruning random walks with small probabilities. How-
ever, this still does not ease the situation because the number of
random walks is still exponential with the number of walking step-
s. For example, on WV, TrunTopSim takes 8.2 seconds to answer a
top-k query, PrioTopSim takes 1.36 seconds while TSF needs only
0.06 seconds, as shown in Figure 7(d).

The efficiency of TSF is better than that of KM-SR, while it is
worse than that of FP-SR. For example, when answering a top-k
query on ND, TSF takes 0.67 seconds while FP-SR needs 0.11 sec-
onds and KM-SR uses 28.2 seconds, as shown in Table 5. The effi-
ciency of KM-SR is poor because all SimRank scores with respect
to the given vertex have to be computed for picking the k most sim-

ilar vertices as the answer. However, FP-SR and TSF use the graph
connectivity of the index to avoid a global search of the top-k sim-
ilar vertices. Furthermore, TSF is slower than FP-SR because TSF
resamples Rq random walks and calculates the points where the
sampled coupled random walks meet when querying, while FP-SR
just needs to scan the indexed FPGs because the information about
the meetings is also stored in the FPGs.

Table 5: Query time (seconds) on medium datasets.
ND BS WG

KM-SR 28.2 305 160
TopSim-SM 0.09 0.04 0.03
TrunTopSim 0.08 0.02 0.02
PrioTopSim 0.01 0.01 0.01

TSF 0.67 0.16 0.10
FP-SR 0.11 0.02 0.02
Par-SR 0.22 0.53 0.80

Table 6 shows the index building time of Monte Carlo sampling-
based algorithms. It can be concluded that FP-SR needs more time
to build the index. For example, FP-SR needs 168.2 seconds while
TSF needs only 18.8 seconds on BS. This is because FP-SR not
only samples the random walks but also computes the points where
each pair of random walks first meet when building the index.

Table 6: Index building time (seconds) on medium datasets.
ND BS WG

KM-SR 32.7 47.6 69.8
TSF 8.9 18.8 28.4

FP-SR 79.5 168.2 216.6

Summary. Algorithms based on random walk have their own
advantages and disadvantages. Path-enumeration-based algorithm-
s, like TopSim-based solutions, have good accuracy but their ef-
ficiency is sensitive to graph density. FP-SR can answer a top-k
query fast but the index cost is expensive. TSF achieves a balance
between space and time cost with good accuracy. The efficiency of
KM-SR is not acceptable.

5.4 Robustness Analysis
To demonstrate the robustness of each algorithm, two experi-

ments on LJ and BS, a dense graph and a sparse graph, respectively,
were conducted with the in-degree of vertices increasing from 10
to 160 in steps of 10. The results are shown in Figure 9. The query
time for each in-degree is the average of ten queries. The results for
TopSim-SM and KM-SR on LJ are not presented since they cannot
finish in 20 hours. Iterative algorithms were not evaluated because
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Figure 9: Robustness of SimRank algorithms on webBerkStan and LiveJournal.
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Figure 10: Scalability Results.

they are robust by definition.
Figure 9 presents the robustness of each algorithm on BS and

LJ. First, Monte Carlo sampling-based algorithms are robust. For
example, the efficiency of TSF remains almost unchanged as the
vertex in-degree increases on BS and LJ, as shown in Figures 9(a)
and 9(b). This is guaranteed by the Monte Carlo sampling tech-
niques. The fixed number of samples used prevents the efficiency
of these algorithms from being affected by the graph structures.
Second, Par-SR is robust as well. This is because the time com-
plexity of Par-SR is linear with the number of the edges in the graph
when the iteration number is set as ten. Finally, TopSim-based al-
gorithms are heavily affected by the vertex in-degree. The query
time increases wildly as the vertex in-degree increases, as shown in
Figures 9(a) and 9(b). This is because the length of random walks
in TopSim-based algorithms is fixed (T = 3) but they enumerate
most of the random walks. As the in-degree of the query vertex
increases, the local graph becomes denser and it incurs exponen-
tially more random walks. Therefore, the TopSim-based solutions
require more time to answer the query.

Summary. TSF, KM-SR, FP-SR, and Par-SR are robust and can
answer a top-k query in a stable time. TopSim-based algorithms are
sensitive to the graph structure and the query time increases sharply
as the in-degree of the query vertex grows.

5.5 Scalability Analysis
We report how each algorithm performs for graphs with different

scales. The datasets used here have various numbers of vertices
from 0.2 million to 1 million, with the average in-degree set as
ten. The result for KM-SR is not presented for clarity of the figure
because KM-SR consumes 200× more time than other algorithms
on these datasets. The scalability of iterative algorithms was not
tested because they can only handle small graphs. Furthermore,
extra large real-world datasets are used to demonstrate how each
algorithm performs under large-scale graphs.

Figure 10 demonstrates how the efficiency of each algorithm
changes when the scale of the graphs increases. First, the efficien-
cy of FP-SR and TSF remains almost unchanged when the graph
becomes bigger. This is because both FP-SR and TSF use a fixed
number of random walks to approximate SimRank scores. The in-
creased graph size causes the index building process to consume
more time but has little effect on the in-memory query process.
Second, TopSim-based algorithms are not influenced by the graph
scale because they enumerate all the random walks in a local area
(T = 3) to compute SimRank scores. When the scale of the graph-
s increases while the local structures remain unchanged, the effi-
ciency of TopSim-based solutions is stable because the number of
random walks used for computing SimRank remains unchanged.
Finally, the query time of Par-SR increases linearly with respect to
the graph scale. This is because the time complexity of Par-SR is
linear with the graph size when the iteration number is set to ten.

Table 7 shows the efficiency of SimRank algorithms on four

large real-world datasets. First, FP-SR cannot handle large graphs.
For example, FP-SR on WP runs out of memory due to the high
space cost for the index. Second, TSF can process large graphs,
like IT and WP, efficiently. The reason why TSF needs more time
on TW is that TW is so dense that fewer vertices are filtered by the
connectivity of one-way graphs. Third, TopSim-based algorithms
cannot answer a top-k query in large dense graphs, like TW. This
is due to the extremely dense substructure of TW. Finally, Par-SR
can handle large graphs, like LJ and IT, in a relatively stable time.

Table 7: Query time (seconds) on large datasets. “MLE” stands
for “memory limited error”.

LJ WP IT TW
TopSim-SM 660.5 13.04 1.93 MLE
TrunTopSim 17.1 4.87 0.48 MLE
PrioTopSim 0.99 0.39 0.25 3603

TSF 0.63 2.29 1.31 174.7
FP-SR 0.12 MLE MLE MLE
Par-SR 22.11 68.03 116.6 751.2

Summary. The efficiency of TSF and FP-SR does not change
too much when the graph scale increases if the indices can be put in
memory. TopSim-based solutions can scale to large graphs but their
efficiency relies on the local structure of the graphs. The efficiency
cost of Par-SR increases linearly when the graph scale increases.

6. OTHER ALGORITHMS
Graph computing has attracted a lot of research interests [19, 22,

21, 4]. SimRank is an important similarity measure in graphs and
most of the SimRank algorithms are discussed and re-implemented
in our paper. However, there are still some other algorithms that do
not belong to the three classes or have poor performance for a top-
k query theoretically. Now we introduce them as a complement to
the SimRank topic.

FS-SR. Li et al. [14] proposed FS-SR to compute the single-pair
SimRank in O(Td2 ·min{dT , n2}) time based on random walk.
However, it is expensive for FS-SR to handle a top-k query since it
has to calculate all SimRank scores with respect to the given vertex.

BlockSimRank. Li et al. [13] introduced BlockSimRank, an
efficient similarity computation algorithm that exploits the block
structure. BlockSimRank first partitions the graph into blocks.
Then it computes similarity scores in each block iteratively. Final-
ly, the similarity between vertices in different blocks is estimated.
As a result, BlockSimRank achieves a performance improvement
from O(Tn2d2) to O(Tn

4
3 d2) on average.

SRJ. Zheng et al. [28] introduced a new SimRank join-based
query problem, which aims to find vertex pairs (u, v) from two ver-
tex sets U and V (u ∈ U, v ∈ V ) whose SimRank scores are larger
than a given threshold. They proposed SRJ, which uses some stored
SimRank scores to compute the unknown ones by solving linear e-
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quations. However, SRJ cannot scale to large graphs because it
depends on the product graph (G×G).

TSJ. Tao et al. [24] introduced the top-k SimRank-based simi-
larity join problem, and proposed a solution, TSJ, which encodes
each vertex as a vector and computes SimRank via a vector–vector
multiplication. To cope with the top-k similarity join problem, TSJ
identifies 2k candidates and uses a tree-based WAND algorithm to
identify the answers based on the candidates. TSJ needs O(ndT )
space to store the vectors via sparse representation, where d is the
average in-degree of the graph.

7. CONCLUSION
In this paper, we discussed in depth the existing algorithms that

compute SimRank and classified them into three different cate-
gories, i.e., iterative method, non-iterative method, and random
walk. Furthermore, we set up a unified environment and compre-
hensively compared the algorithms via different metrics, including
efficiency, effectiveness, robustness, and scalability. Another crite-
ria is how easy an algorithm is to tune (e.g., users might prefer a
parameter-free algorithm even if it is slightly slower or less accu-
rate); however, as we will see, our guideline won’t change even if
we take the cost of hyperparamter tuning into consideration.

We provide the following high-level suggestions for choosing
algorithms given a SimRank task.

1. For sparse graphs, TopSim-based solutions perform better;
for small dense graphs, Par-SR is the most suitable solu-
tion. Moreover, Par-SR and TopSim-based have no hyper-
paramters to tune.

2. If the workload does not fit into the category above, Monte
Carlo sampling-based algorithms are recommended. For ex-
ample, we recommend TSF given large local dense graphs
(e.g. Twitter in Table 7.).

Furthermore, with the theoretical analyses and experimental s-
tudies, we summarized a grade table that describes the pros and
cons of each algorithm under different metrics in Table 8. There-
fore, users can find a good option given a SimRank task.

Table 8: Grades of algorithms for different metrics. The grade varies
from zero to five, and a higher grade indicates that the algorithm is bet-
ter at the corresponding metric. “I,” “N,” and “R” stand for iterative
method, non-iterative method, and random walk, respectively.

Algorithms Method Effi-
ciency

Effective-
ness

Robust-
ness

Scala-
bility

Naive-SR I 1 5 5 1
Partial-SR I 1 5 5 1

OIP-DMST I 1 5 5 1
SimMat N 0 0 0 0
NI-Sim N 1 1 5 2
Par-SR N 3 5 5 4
KM-SR R 2 4 5 2

TSF R 4 4 5 5
FP-SR R 5 3 5 4

TopSim-SM R 4 5 2 5
TrunTopSim R 4 5 2 5
PrioTopSim R 5 4 3 5
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