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ABSTRACT
Most of the data is extracted and processed by Spark in
Tencent Machine Learning Platform. However, seldom of
them use Spark MLlib, an official machine learning (ML)
library on top of Spark due to its inefficiency. In contrast,
systems like parameter servers, XGBoost and TensorFlow
are more used, which incur expensive cost of transferring
data in and out of Spark ecosystem.

In this paper, we identify the causes of inefficiency in Spark
MLlib and solve the problem by building parameter servers
on top of Spark. We propose PS2, a parameter server architec-
ture that integrates Spark without hacking the core of Spark.
With PS2, we leverage the power of Spark for data process-
ing and ML training, and parameter servers for maintaining
ML models. By carefully analyzing Tencent ML workloads,
we figure out a widely existing computation pattern for ML
models—element-wise operations among multiple high di-
mensional vectors. Based on this observation, we propose
a new data abstraction, called Dimension Co-located Vec-
tor (DCV) for efficient model management in PS2. A DCV
is a distributed vector that considers locality in parameter
servers and enables efficient computation with multiple co-
located distributed vectors. For ease-of-use, we also design
a wide variety of advanced operators for operating DCVs.
Finally, we carefully implement the PS2 system and evaluate
it against existing systems on both public and Tencent work-
loads. Empirical results demonstrate that PS2 can outperform
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Spark MLlib by up to 55.6× and specialized ML systems like
Petuum by up to 3.7×.
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1 INTRODUCTION
Nowadays using machine learning to train high-dimensional
models from large datasets has been a standard task in cur-
rent industrial applications [15, 20, 25, 26, 28]. In recent years,
there is a flurry of work on building specialized systems to
manage large-scale ML models, which often employ a pa-
rameter server architecture [4, 7, 16, 18, 28]. However, the
challenge of distributed ML in action comes from not only
the efficiency of training ML models, but also the capability
of (pre)processing training data.

(Real Task In Tencent.) For user profiling, it is common
to use different ML models to learn from multiple data sources.
Specifically, we use graph embedding [12, 23, 27] to learn
the latent information in large social networks (e.g., the QQ
social network contains more than 800 million users) and
text mining [29, 30] to learn user interests from users’ texts.
Furthermore, to employ high-dimensional user profiling for
personal recommendation, where each user instance may
contain more than 200 million features, classification models
like logistic regression or factorization machine are used.
Spark [32] is a fundamental computation framework for

big data analytics in Tencent, and naturally we use it to
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collect and clean various kinds of aforementioned data like
graphs, texts and images, and create the large-scale training
data. However, when training ML models, Spark MLlib [22],
an official ML library on top of Spark, is inefficient to be
used in practice. In contrast, we use specialized ML systems
based on parameter servers [21] for efficient ML training.
However, this solution with two separated systems not only
incurs the expensive cost for data movement between Spark
and parameter server-based ML systems, but also increases
the complexity of distributed ML pipeline.

In this paper, we aim for designing a system that can lever-
age the benefits of both big data processing and efficient ML
training. We first identify that the inefficiency of Spark ML-
lib comes from the “single-node” bottleneck in the network
communication step. When training an ML model using ML-
lib, a single node (i.e., the driver in Spark) needs to collect
updates from all workers and broadcasts model back to all
of the workers, whose size is usually linear to the dimension
of the features. As a result, when the number of features
increases to millions or tens of millions, the communication
cost between the driver and dozens or hundreds of workers
would dominate the whole training process.

Our solution is to build a parameter server module on top
of Spark. Conceptually, we use multiple servers to replace the
single-node driver for maintaining the ML model, thus the
communication bottleneck can be removed. There remain
two challenges for building such a system:
• Ease-Of-Use. The new system should be easy to use
and fully compatible with the Spark ecosystem. Users
can deal with large datasets and train ML models in a
single system. Furthermore, the system modification
over Spark should be transparent to the Spark users.
• High Efficiency. The new system should be efficient
for various real-world ML workloads in Tencent. To
achieve this, model-specific optimization techniques
need to be carefully designed.

Existing solutions like Glint [14] and DistML1 cannot address
these two challenges. For example, Glint hacks the Spark sys-
tem, and users have to manually start the parameter servers
before they submit a job. Moreover, the existing systems only
provide the pull/push interfaces to users, without consider-
ing the diversity of operations on ML models, leading to an
inefficient implementation on different workloads.
To tackle the above two challenges, we propose PS2, an

easy-to-use parameter server built on top of Spark with high
efficiency. PS2 leverages Spark for efficient data processing
and parameter servers for model management.

Ease-Of-Use.We do not break the core of Spark, rather, we
treat parameter server as a separatemodule in PS2 and enable

1https://github.com/intel-machine-learning/DistML

the communication between spark executors and parameter
servers. To achieve this, we start a client inside each worker
to get the address of parameter servers and use the address
to communicate with them. We further add a coordinator in
PS2 for scheduling the workers and servers to fulfill an ML
job. Thus the job execution is transparent to Spark users but
arms Spark with the power of training large models. We also
implement basic operators in PS2 like pull/push.

High Efficiency. PS2 resolves the “single-point” bottleneck
in Spark by using multiple servers to replace the single-node
driver for model management. However, the traditional op-
erators of parameter servers (i.e., pull/push) are not enough
for efficient operations on model parameters because it lacks
the consideration of characteristics of real-world workloads.

We, with a careful analysis on TencentMLworkloads, iden-
tify that the operations on ML model parameters are often
complicated and traditional operators like pull/push cannot
handle them efficiently. These operations can often be mod-
eled as “element-wise operations onmulti-vector MLmodels”
(See Section 3.1), in which we need to perform element-wise
operations on two or more distributed model vectors. For
example, when running graph embedding models like Deep-
Walk [23], we need to use the embedding vector of one vertex
to update the vectors of its co-occurrence neighbors. With
operators like pull/push, we have to pull these two vectors
from parameter servers, update them in each worker and
push the updated vectors back to the servers. These could
cause significant communication overhead between workers
and servers.
To handle this case, we propose a new data abstraction,

namely Dimension Co-located Vector (DCV) to model the
ML model parameters. A DCV is a distributed vector on
parameter servers that enables efficient element-wise opera-
tions with multiple DCVs. Considering that the dimension of
DCV can often be hundreds of millions in practice, we pro-
pose to partition DCV by column. Further, if the same dimen-
sions of two DCVs are located on different servers, it incurs
server-server communication to complete the element-wise
operations. To avoid such communication cost, we propose
to co-locate their same dimensions on the same server. We
extend PS2 with the DCV abstraction and a set of operators
for efficient model management.

We finally implement PS2, an easy-to-use and highly effi-
cient system that integrates Spark with parameter servers.
PS2 achieves 55.6× faster than Spark MLlib on both public
and Tencent workloads. To summarize, our contributions
are as follows:

• We identify the inefficiency of ML on Spark and bridge
this gap by proposing PS2, a parameter server on top
of Spark without breaking the core of Spark. PS2 is
easy to use and transparent to Spark users.

https://github.com/intel-machine-learning/DistML


• By further analyzing Tencent ML workloads, we find
that the model management can be complicated and
the classic “pull/push” operators cannot address the re-
quirement of “element-wise operation on multi-vector
ML models”. We further propose DCV, a new abstrac-
tion that allows more complicated server-side compu-
tations on model parameters by considering locality
in parameter servers. We extend PS2 with DCV and a
set of powerful operators.
• With the DCV abstraction, we implement various
ML models by considering the characteristics of each
model. Notable examples include Logistic Regression
(LR), graph embedding models like DeepWalk [23],
Gradient Boosting Decision Tree (GBDT) [15, 17] and
Latent Dirichlet Allocation (LDA) [29, 30].
• We evaluate PS2 against systems like Spark MLlib,
Petuum, XGboost, Glint [14] and DistML. Experimen-
tal results show that PS2 can outperform Spark MLlib
by up to 55.6× and specialized ML systems by up to
3.7× on both public and Tencent workloads.

PS2 now has been deployed in Tencent for months, tack-
ling real-world large-scale ML tasks like graph embedding,
text mining and classification.
Paper Organization.We identify the causes of inefficiency
of Spark MLlib using an empirical solution in Section 2. We
propose the system design of PS2 in Section 3, followed
by the DCV abstraction, with which we better manage ML
model parameters in Section 4. We present the system im-
plementation in Section 5 and evaluate PS2 in Section 6. We
present related work in Section 7 and conclude in Section 8.

2 ANALYSIS OF SPARK MLLIB
We empirically study the characteristics of MLlib, an official
ML library on top of Spark. Specifically, we introduce the
process of training ML models in MLlib and use real-world
workloads to demonstrate its bottlenecks in ML training.
Execution Process in Spark MLlib. In Spark MLlib, there
is a driver and multiple executors. The driver controls the
logic of the computation while the executors run parallel
tasks defined in RDD. An iteration of running SGD to train
LR in Spark MLlib can be divided into four steps:
(1) Model broadcast: The driver first broadcasts the model

parameters to all executors;
(2) Gradient calculation: Each executor samples a fraction

of data points and calculates the gradient;
(3) Gradient aggregation: The driver aggregates the gradi-

ents from all executors;
(4) Model update: The driver uses the aggregated gradients

to update the model locally.
Profiling Results of Spark MLlib. In Tencent, logistic re-
gression is widely used for recommendation systems, where
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Figure 1: Empirical analysis for Spark MLlib.

the number of features often gets hundreds of millions. To
understand the performance bottlenecks in MLlib, we train
LR using SGD on four datasets with various number of fea-
tures, i.e., 40K , 3, 000K , 30, 000K and 60, 000K . We log the
time cost for the four steps mentioned above in each iteration
and the results are shown in Figure 1. We use 20 executors
for each workload and the mini batch fraction is set to 0.01.
Figure 1(a) presents the time cost per iteration, and Fig-

ure 1(b) reports the time breakdown of four steps. From
Figure 1(a), we observe that the performance of Spark ML-
lib degrades with the increasing of number of features. For
example, the performance is 168× slower when increasing
the number of features from 40K to 60, 000K . This is due to
its unreasonable solution for the gradient aggregation step,
which employs a single node, i.e., the driver, to collect gra-
dients. In more details, from Figure 1(b), it is easy to figure
out that gradient aggregation becomes the bottleneck—it
occupies most time of one iteration. Clearly, Spark MLlib
performs bad at the gradient aggregation step.
Summary. The inefficiency of training LR in Spark MLlib
comes from the communication step, in which the single-
node driver collects gradients from all workers. Thus a prob-
able solution of solving the “single-node” bottleneck is to
integrate Spark with parameter servers, the state-of-the-art
solution that uses multiple servers to replace the single node.

3 SYSTEM DESIGN
We address the inefficiency of Spark MLlib by building PS2, a
system that integrates Spark with parameter servers. We first
identify the necessity of enabling server-side computation
by analyzing the computation pattern on ML model update,
which is not yet carefully considered by existing ML systems.
Based on this observation, we then present the system archi-
tecture of PS2. Finally, we use LR as an example to showcase
the execution flow of PS2.

3.1 Computation Pattern of Model Update
We introduce the common computation patterns of updating
ML models using LR and graph embedding as two examples.



Example 1: Adam for LR. Logistic Regression is a widely
used classification model. Given training data X , the goal
of LR is to learn a model parameter w that minimizes the
logistic loss over X . Adam [19], a variant of stochastic gra-
dient descent (SGD), is mostly used for optimization due to
its fast convergence. Apart from the weight vector, Adam
stores two separate vectors to adapt the learning rate on each
dimension, i.e., an exponentially decaying average of past
squared gradients st , and an exponentially decaying average
of past gradients vt . The modelw is updated as follows:

®st ←β1 ®st−1 + (1 − β1) ®дt 2

®vt ←β2 ®vt−1 + (1 − β2) ®дt

®s ′t ←
®st

1 − βt1
®v ′t ←

®vt

1 − βt2
®wt+1 ← ®wt −

η√
®s ′t + ϵ

®v ′t

(1)

where дt is the gradient of the current iteration, β1, β2, ϵ are
hyperparameters of Adam and η is the learning rate.
The model vectors (i.e., ®st , ®vt and ®wt ) share the same di-

mensions, which is the dimension of features and could be
up to hundreds of millions in practice. When updating model
®w , we first use the gradient to compute ®st and ®vt . We further
revise the value of ®st and ®vt and correct the bias. Finally, the
weight vectorw is updated by the revised vectors. To execute
the above equations, element-wise operations among these
model vectors are needed.

Example 2: SGD for Graph Embedding. Graph embed-
ding [12, 23, 27] introduces ML for analyzing graphs. Given
a graph (V , E) with vertex set V and edge set E, the goal of
graph embedding is to learn an embedding vector for each
vertex so that the vector can preserve some property about
the vertex in this graph. SGD is often employed for train-
ing graph embedding. A typical computation pattern is as
follows: For each vertex u, we allocate two K-dimensional
vectors, one vector ®u as its embedding vector and the other
®v ′ as its “context” vector, where K is a hyperparameter. Dur-
ing the training process, we sample a pair of vertices (u,v)
according to a model-specific rule (e.g., random walk for
DeepWalk [23]), and consider this two vertex to be similar.
To embed this relationship into their vector representations,
we adopt the following update rule:

®ut+1 ← ®ut − η · (σ (⟨ ®ut , ®vt
′
⟩) − 1) · ®vt ′

®vt+1
′
← ®vt

′
− η · (σ (⟨ ®ut , ®vt

′
⟩) − 1) · ®ut

(2)

Here σ (x) = 1/(1 + exp(−x)) is the sigmoid function and η
is the learning rate. ⟨®u, ®v ′⟩ is the dot product between two
vectors. To execute the above equation, we first compute
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Figure 2: System architecture of PS2.

the dot product and use the result to conduct element-wise
operations on the two embedding vectors.

Summary. We summarize two inherent properties for
these operations on ML models, which are not explored in
existing ML systems.

• Multiple Vectors as the Model. First, these ML models
contain multiple vectors as the model. For example,
Adam contains one weight vector and two auxiliary
vectors (i.e., ®st and ®vt ), and graph embedding has 2V
vectors as the model.
• Element-wise Operations on Model Vectors. Second, we
need element-wise operations on these vectors when
performing the model update. For example, in Adam
we need to perform element-wise addition, multiplica-
tion and division on the four model vectors. For graph
embedding, element-wise addition and multiplication
among the embedding vectors are also needed.

These two properties of ML model operations require
careful consideration for system design. Maintaining these
vectors proposes a heavy storage overhead while the linear
algebra operations among these vectors introduce severe
computation overhead. Note that, these two properties do
not only exist in Adam for LR and SGD for graph embedding.
Some other optimization algorithms and machine learning
models, such as L-BFGS [8], Adagrad [10], GBDT and LDA
also share one or both properties.

3.2 Architecture
To tackle the huge communication overhead in Spark ML-
lib as well as the storage overhead of model vectors, we
propose PS2, a parameter server architecture built on top of
Spark. To further address the requirement of element-wise
operations among model vectors, we propose a new abstrac-
tion, namely Dimension Co-located Vector (See Section 4
for details), to enable server-side computation that considers
locality in model management.



Figure 2 presents the system architecture of PS2. There are
three mainmodules, including a coordinator, several workers
and servers:
• Workers: PS2 employs executors in Spark as work-
ers. Workers are responsible for processing the train-
ing data, and calculating the model updates. When
pulling models or pushing updates, workers commu-
nicate with servers via DCV Ops.
• Servers: PS2 relies on parameter servers for model
management, including both the storage and compu-
tation. The model vectors are maintained as DCVs
and distributed among multiple servers. The servers
provide access of model vectors to workers or the co-
ordinator through the DCV Ops.
• Coordinator: PS2 further adopts a coordinator to
schedule the servers and workers.

3.3 Execution Flow
We use training logistic regression with Adam as an exam-
ple to demonstrate the execution process of PS2. During
the initialization phase, we use Spark to load the training
data as RDDs [31] (lines 1-2) and initialize model parameters
distribtuedly on parameter servers through the DCV abstrac-
tion (lines 3-7). Then we iteratively use the training data to
correct the model parameters. Each iterations can be divided
as the following four steps:
(1) Model pull (lines 13-14): Each worker pulls the weight

from multiple parameter servers using a DCV pull
operator.2

(2) Gradient calculation (lines 15-16): Each worker uses
the model pulled and the local batch of training data
to compute the gradient.

(3) Gradient push (lines 17-18): Each worker pushes its
local gradients to parameter servers via a DCV add
operator. A global barrier (line 19) is further incurred
relying on Spark’s scheduling mechanism, to ensure
that all the gradients are added to the DCV on servers.

(4) Model update (lines 21-26): Servers incur an element-
wise operation among four DCVs via a zip operator to
do server-side computation among multiple servers.

4 DIMENSION CO-LOCATED VECTOR
In this section, we introduce the new abstraction called Di-
mension Co-located Vector, which aims to accelerate the
operations on ML models and simplify the programming of
server-side computation. We introduce the design considera-
tions for DCV and then propose a set of DCV operators to
better support the server-side computation. The correspond-
ing implementation is also included.

2Example usage of DCV operators is covered in Section 5.2.

1 // load data as RDDs

2 val data = sparkContext.textFile("hdfs://...")

3 // Allocate four DCVs to model vectors

4 val weight = DCV.dense(dim, 4)

5 val velocity = DCV.derive(weight).fill(0.0)

6 val square = DCV.derive(weight).fill(0.0)

7 val gradient = DCV.derive(weight)

8
9 for (i <- 0 until numIterations) {

10 gradient.zero()

11 // Gradient computation

12 data.sample(fraction).mapPartition{ case iterator =>

13 // Pull weight from PS

14 val local_weight = weight.pull()

15 // Calculate gradient locally

16 val local_gradient = calculateGradient(local_weight, iterator)

17 // Push local gradient to PS

18 gradient.add(local_gradient)

19 }.foreach()

20
21 // Model update

22 weight.zip(velocity, square, gradient).mapPartition {

23 case (w, v, s, g) =>

24 // Update model in each partition (server-side computation)

25 updateModel(w, v, s, g)

26 }

27 }

Figure 3: Code sample of “Adam for LR” on PS2. The under-
lined methods are DCV operators.

4.1 Core Abstraction: DCV
By analyzing the operations on ML models in Section 3.1, we
identify that simple pull/push operators that access models
by rows, are not enough for managing ML models in pa-
rameter servers. ML models can often be modeled as a com-
bination of multiple vectors and element-wise operations
on these model vectors are needed. This actually imposes a
requirement for accessing the distributed model parameters
by column.
To meet this requirement, we propose a new abstraction,

namedDimensionCo-locatedVector (DCV). DCV is a vector
distributed among parameter servers, and supports two types
of operators. One is row access operator, which provides
read/write interfaces to handle data communication between
workers and servers. The other is column access operator,
which operates the same columns from multiple vectors
each time. Furthermore, to support efficient element-wise
operations on multiple vectors, we partition one DCV with a
column-partition strategy and co-locate the same dimensions
of multiple DCVs onto the same server.

4.2 Operator Sets
For ease-of-use, PS2 provides a set of operators over DCV.
As mentioned before, the operators are divided into two
types according to their access patterns. Table 1 lists a set of
operators in PS2.



Category Operators
Row Accessing Ops pull, push, sum, nnz, norm2
Column Accessing Ops axpy, dot, copy, sub, add, mul, div
Creation Ops derive, dense, sparse

Table 1: DCV Operators

Row Access Operators. These operators provide read-
/write operations for one row and handle data communi-
cation through network. There are mainly two scenarios
that require row access operators. The first one is to trans-
fer models between workers and servers, including pull and
push. The second is to obtain an aggregation value from one
vector, such as sum and norm2. Note that existing parameter
servers also support row access operators.
Column Access Operators. These operators operate the
same columns of multiple DCVs. They can perform element-
wise operations, such as dot and add, among multiple vectors.
These operators can be used to better support server-side
computation for ML models.
Apart from row/column access operators, we also pro-

vide some operators to create DCVs. PS2 provides normal
operators like sparse and dense to create sparse and dense
model vectors. More than that, PS2 supports a special opera-
tor, called derive. With the derive operator, users can create
a DCV that is co-located with a given DCV. This enables us
to explore efficient element-wise operations for two DCVs
without heavy communication cost accross servers.

4.3 Implementation of DCV
The performance of algorithms in PS2 is heavily influenced
by the performance of row access operators and column
access operators of DCVs. To achieve efficient row access
operators, we use column-partition strategy, to divide one
vector into multiple splits and store the splits among servers.
Thus, we can execute row access operators (e.g., pull/push)
in parallel across workers and servers. And to speed up col-
umn access operators, we co-locate the same dimensions of
multiple vectors on the same server. Thus, PS2 avoids com-
munication among servers when executing element-wise
operations on multiple DCVs (e.g., add/mul). This require-
ment leads us to a new operator for DCVs, namely derive.
Column-partition Strategy. As mentioned in Section 4.1,
an ML model often contains a set of vectors. The existing
parameter server systems, such as Petuum, usually partition
the model matrix by row. That is, each partition is actual a
complete vector. Thus, the system cannot run row access
operators in parallel, causing single-point problem.

Instead, DCV in PS2 uses a column partition strategy [3].
With such partition strategy, we not only accelerate the row
access operators by storing one row with multiple servers,

1 @Inefficient writing

2 val v1 = DCV.dense(dimension)

3 val v2 = DCV.dense(dimension)

4 val dot1 = v1.dot(v2)

5
6 @Correct writing

7 val v1 = DCV.dense(dimension)

8 // derive a new DCV from an existing one

9 val v2 = DCV.derive(v1)

10 val dot2 = v1.dot(v2)

Figure 4: “dot” between two DCVs. Lines 1-4 show an ineffi-
cient usage of DCV while lines 6-10 present the correct way.

but also open up the opportunity for optimizing column ac-
cess operators. Through column partitioning, DCVs become
a set of vector splits. If we cleverly assign these splits, i.e.,
co-locating splits with the same dimensions onto the same
server, then we can avoid the communication cost when
using column access operators to operate on multiple DCVs.
The co-located property is achieved by the derive operator.
Derive Operator. The derive operator is to generate co-
located DCVs. Specifically, when allocating one DCV through
dense operator, we create a distributed rawmodelmatrix with
k rows, in which (k − 1) rows are pre-allocated for future
usage. Thus, when calling the derive method, one free row
from the matrix is returned, and the new derived DCV is
guaranteed to share the same partition strategy with the first
row in the raw matrix. The initial size of the matrix (i.e., the
k) is usually small, for example ten. Programmers can also
pass another parameter to precisely set the number of rows
in the original matrix.

We take a simple binary operator dot to demonstrate the
power of DCVs using Figure 4. Lines 1-4 show an inefficient
programming of performing dot between two DCVs. The
two DCVs are irrelevant because they do not share the same
partition strategy. It is possible that same dimensions of v1
and v2 locate on different servers, and would incur huge
communication cost among parameter servers when per-
forming dot. Lines 6-10 give the right way, which uses the
derive operator. In line 9,v2 is generated by calling the derive
method of DCV with v1 as the parameter. Through this way,
their partition strategies are guaranteed to be the same. Thus,
the dot between v1 and v2 is efficient and there is no data
shuffling across servers during the execution.

5 SYSTEM IMPLEMENTATION
PS2, as an industrial system that brings Spark the power of
training large scale ML models with high efficiency, has a
careful engineering design for system architecture, algorithm
optimization and the ability to handle failures.

5.1 Architecture Implementation
We implement PS2 by building a parameter server module
on top of Spark. In general, Spark is used for processing



and holding immutable training data while parameter server
is responsible for maintaining mutable and shared model
parameters. To simplify the programming of PS2 and make
it easy to use for Spark users, we implement the architecture
by launching Spark and parameter server as two separated
applications. To enable the communication between workers
and servers, we build a PS-client on each worker. Further,
for the simplicity of system architecture, we use the driver
to complete the functions of the coordinator, which means
that the driver needs to manage and monitor the running of
servers. Therefore, PS2 has four components, i.e., PS-server,
PS-client, Executors and the Coordinator in Figure 2.

• Executors. PS2 employs executors in Spark as work-
ers. They leverage the power of RDD [31] to handle
large scale data processing and computation of model
updates.
• PS-servers. PS-servers store model parameters. Dur-
ing the training process, the model parameters are
partitioned into multiple shards and each PS-Server
maintains a fraction of them.
• PS-client. PS-client is the bridge module between PS-
server and executors. Each executor contains a PS-
client and is used to issue DCV Ops to PS-servers, to
operate on the model parameters.
• Coordinator. The coordinator is extended from the
driver in Spark. It schedules workers and servers to
fulfill an ML job, such as issuing RDD operators to
workers, DCV operators to servers and synchronizing
among servers and workers. Apart from scheduling ex-
ecutors, it also contains a newmodule called PS-master.
PS-master manages the lifetime of PS-servers, and pro-
vides some meta information, including the locations
and routing tables for PS-client to locate parameters.

We implement PS2 by Java and Scala. The RPC framework
in PS2 is implemented by Netty3 and Protobuf4, while the
data communication between parameter servers and Spark
is directly transferred through Netty. The modification of
PS2 over Spark is transparent to Spark users and program-
mers can submit PS2 jobs similarly as they do for Spark.
Moreover, since parameter server is launched as a separated
application, PS2 is compatible with any version of Spark.

5.2 Algorithm Implementation
In this section, we present the algorithm implementations
of real-world workloads in Tencent. For each workload, we
introduce the ML model parameters and present how to
implement them with DCVs in PS2.

3https://netty.io/
4https://developers.google.com/protocol-buffers/
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Figure 5: Implmentation of DeepWalk.

5.2.1 Adam for LR. The model parameters for training LR
using Adam are four vectors (See Section 3.1). Moreover,
element-wise operations across these model vectors are
needed. In a industrial workload, the number of features
can often be hundreds of millions or bigger.

In PS2, we model the four model vectors as DCVs to make
sure that they are distributedly co-located on the servers.
Figure 3 shows the implementation of using Adam to train LR.
We first allocate one DCV to store the weight vector and use
derive to generate the other three co-located vectors (lines
3-7). Next, each worker pulls the weight vector distributedly
from the servers and samples a mini batch of training data to
calculate the gradients (lines 12-16). After that, each worker
pushes the gradient to servers via the DCV operator add
(line 18). Note that we incur a barrier here using Spark’s
foreach operator to ensure that all gradients are pushed to
the servers. Finally, we incur a zip operator across the four
vectors and use gradient to update the other three vectors
(lines 21-26). Due to the ability of server-side computation
enabled by DCVs, no extra communication overhead across
servers is needed.

5.2.2 DeepWalk. Given a graph with V vertices, the model
parameters for graph embedding are V × 2 vectors, each
of which is a K dimensional vector. Here K is a hyper pa-
rameter, which could be one hundred or bigger. During the
training process, we need to conduct element-wise opera-
tions on model vectors. A normal approach is to put the
2V model vectors in parameter servers. When updating the
embedding vectors of two vertices, we pull them from the pa-
rameter servers, update them locally and push them back to
the servers. However, this could lead to huge communication
overhead when K is big.
Figure 5 shows the process of running DeepWalk in PS2.

In PS2, we model the 2V embedding vectors as 2V DCVs. For
example, these vectors are partitioned by column and placed
on two servers. After the coordinator issues one executor to
update the model vectors of two vertices, the executor incurs
a DCV dot operator to compute the dot product of these two

https://netty.io/
https://developers.google.com/protocol-buffers/


1 // Allocate DCVs to store the embedding vectors for nodes

2 val first = DCV.dense(K, V*2)

3 val embeddings = new Array[DCV](V*2)

4 embeddings(0) = first

5 for (i <- 1 until V*2) embeddings(i) = DCV.duplicate(u)

6
7 // processing the input data to sample the similar node pairs

8 val data = calculateSimilar(sc.textFile(input))
9
10 for (i <- 0 until numIterations) {

11 data.map { case (u, v) =>

12 val input_u = embeddings(u)

13 val output_v = embeddings(v + V)

14 // dot product

15 val dot = input_u.dot(output_v)

16 val sig = 1 - sigmoid(dot)

17 // update

18 input_u.iaxpy(output_v, sig*eta)

19 output_v.iaxpy(input_u, sig*eta)

20 // loss value

21 calculateLoss(dot)

22 }.sum()

23 }

Figure 6: Code sample for the Graph Embedding algorithm
on PS2. Function calculateSimilar is employed to generate
similar pairs from a graph. Function calculateLoss is used to
calculate the loss value for current pair.
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Figure 7: Implmentation of GBDT. “grad” and “hess”
are first-order and second-order gradient histograms,
respectively.

embedding vectors, via server-side computation. After that,
the executor triggers another DCV operation to update these
two embedding vectors. Here we use a self-defined function
to specify the updating rule according to Equation 2. With
the power of DCV, we reduce the communication overhead
of pulling/pushing the embedding vectors, rather, only some
scalars are transferred through network.

5.2.3 GBDT. For the training of GBDT, two core operations
are histogram construction and split finding. In histogram
construction, GBDT builds multiple vectors, each of which
is a data structure called gradient histogram. Afterwards,
a split criterion, including one feature and its correspond-
ing value, is calculated with these vectors. Similar as Adam

1 // Allocate two DCVs to store gradient histograms

2 val gradHist = DCV.dense(dim, 2).fill(0.0)

3 val hessHist = DCV.derive(gradHist).fill(0.0)

4
5 for (i <- 0 until numTreeNodes) {

6 gradHist.zero()

7 hessHist.zero()

8 data.mapPartition { case iterator =>

9 // Build histograms

10 val localGrad = buildGrad(iterator)
11 val localHess = buildHess(iterator)
12 gradHist.add(localGrad)

13 hessHist.add(localHess)

14 }.foreach()

15
16 // Find the optimal split criterion

17 val maxGain = gradHist.zip(hessHist).mapPartition {

18 case (grad, hess) =>

19 computeInfoGain(grad, hess)

20 }.max()

21 }

Figure 8: Code sample for the GBDT algorithm on PS2.
Function buildGrad and buildHess are used to calculate gra-
dient and build histograms.

and DeepWalk, this multi-vector case requires element-wise
operations between vectors.

Figure 7 demonstrates the implementation of GBDT in PS2.
We use the parameter server to accomplish the histogram
construction and split finding. In order to enable the com-
putation between histogram vectors, we use DCVs to store
these histograms, i.e., first-order and second-order gradient
histogram. First, we start the task on each worker via a RDD
operator. Then, we parallel the gradient calculation among
all data partitions and push the local gradient to servers.
Third, we use the interface of DCVs to complete the split
finding (the max operator5). Due to the server-side compu-
tation ability enabled by DCVs in PS2, we can conduct the
split finding operation for one feature on servers, avoiding
the transmission of gradient histograms.

5.2.4 Other Models. Apart from the above models, we also
implement other ML models like LDA, Support Vector Ma-
chine, etc. Some modern optimizations are also implemented,
like Adagrad, RMSProp and L-BFGS.

5.3 Fault Tolerance
As an industrial system, PS2 also provides mechanisms to
handle fault tolerance. There are four types of failures:
Task Failure. Tasks in executors may encounter failures due
to unpredictable reasons. During the training process, each
task samples a mini batch of training data and computes the
model update using the model pulled from PS-servers. After

5In this operator, we enumerate the same elements of grad and hess from left
and right, calculate a loss gain, and find the place that yields the maximal
loss gain.



this, the model update is pushed to PS-servers via DCV Ops.
To handle this failure, PS2 relies on Spark’s mechanism to
restart a new task. This is correct because the gradient will
not be pushed to servers twice—the push operator is the last
operation for a task.
Executor Failure.When an executor fails, the training data
maintained by the executor are lost. To handle this case,
PS2 relies on the fault tolerance provided by RDDs. It simply
launches a new executor and reload that partition of training
data from the input (e.g., HDFS).
Server Failure. The failure of a server can be detected by
the coordinator. When a server is down, it loses its states—a
fraction of model parameters. To handle this failure, PS2 pe-
riodically checkpoints the model parameters on each server
to a reliable external storage. When a server failure hap-
pens, the coordinator starts a new server and the new server
recovers the latest model by loading from the checkpoints.
Coordinator Failure. For failures that happen to the co-
ordinator, we cannot cope with them. Fortunately, the co-
ordinator handles little workloads and the probability of
encountering a failure is low.

6 EMPIRICAL EVALUATION
In this section, we evaluate PS2 from three aspects. First, we
demonstrate the benefits brought by DCV. Then we show
the efficiency and generality of PS2 by comparing with other
existing ML systems. Finally we evaluate the scalability and
fault tolerance of PS2.

6.1 Experimental Setup
Experimental Environment.We conduct the comparison
on an inner-shared Yarn cluster in Tencent, which contains
2700 machines and executes thousands of jobs every day.
Each machine has a 2.2GHz CPU with 12 cores, 256GB mem-
ory and 12 × 2TB SATA hard disk. These machines are con-
nected with 10Gbps Ethernet network.
Datasets and MLModels. Table 2 summarizes the datasets
used in the experiments. We use three public datasets, such
as KDDB, KDD12 and PubMED, as well as five datasets from
Tencent, including CTR, APP, Gender, Graph1 and Graph2.6
For ML models, we evaluate LR, DeepWalk, GBDT and LDA.

Baseline Systems & Evaluation Metrics. We compare
PS2 with Spark MLlib 2.1.1, DistML, Glint [14], Petuum
1.1 and XGboost 0.7. DistML and Glint are two pioneering
systems that combine parameter server and Spark without
server-side computation ability. They rely on Spark 1.6.0
and cannot run over the latest version of Spark. The exper-
imental results of PS2 are conducted based on Spark 2.1.1.

6We do not have the original graph. The users from business unit do the
sampling of random walks on graphs.

Model Dataset #rows #cols #nnz Size

LR
KDDB 19M 29M 585M 4.8GB
KDD12 149M 54.6M 1.64B 21GB
CTR 343M 1.7B 57B 662.4GB

LDA PubMED 8.2M 141K 737M 4GB
App 2.3B 558K 161B 797GB

GBDT Gender 122M 330K 12.17B 145GB
Model Dataset #vertices #walks Size

DeepWalk Graph1 254K 308K 100MB
Graph2 115M 156M 10.5GB

Table 2: Dataset Statistics. nnz denotes number of non-zero
items and #walk represents the number of random walks
sampled for each graph.

System LR DeepWalk GBDT LDA
Spark MLlib ✓ ✗ ✓ ✓

DistML ✓ ✗ ✗ ✓

Glint ✗ ✗ ✗ ✓

Petuum ✓ ✗ ✗ ✓

XGboost ✗ ✗ ✓ ✗

PS2 ✓ ✓ ✓ ✓

Table 3: Algorithms supported by different systems.

We compare each model mentioned above if the system has
implemented it. Table 3 lists the models supported by these
systems. To measure the end-to-end performance, we report
the loss of each workload as time elapses.

Parameter Settings. When evaluating different systems,
we allocate same number of workers/servers and enough
memory to guarantee good performance. We follow previous
studies [15, 18, 23, 29] to set ML-related hyperparameters
for fair comparison. For each workload, we set the same
hyper parameters for all systems because these systems enjoy
the same statistical efficiency. Details about hyperparameter
settings for each workload can be found in Appendix A.

6.2 Evaluation of DCV
We showcase the benefits of the DCV abstraction using LR
and DeepWalk. There are two benefits of DCV. First, it re-
solves the “single-point” bottleneck in Spark by using mul-
tiple servers to replace the single-node driver. Second, it
enables server-side computation, which could further re-
duce the communication overhead between the workers and
servers. Thus we compare three different realizations of LR
and DeepWalk on PS2: (1) purely rely on Spark (namely
“Spark-”), (2) using PS2 with pull/push (namely “PS-”) and
(3) using PS2 with the DCV implementation (namely “PS2-”).
For example, we refer to the Adam implementation using
PS2 with pull/push as PS-Adam.
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Figure 9: Effectiveness of DCV.

6.2.1 Adam for LR. Figure 9(a) and 9(b) present the effects
of DCV when training LR using Adam on KDDB and CTR
dataset. The result on KDD12 dataset is similar.

Figure 9(a) shows the evaluation result over KDDB dataset.
As we can see, in order to achieve 0.3 training loss, PS2-
Adam requires 59 seconds while PS-Adam requires 277 sec-
onds. For Spark-Adam, it requires 926 seconds. We analyze
the results in two aspects. First, PS2-Adam is significantly
faster than Spark-Adam, by 15.7×. This is because Spark-
Adam relies on the driver to broadcast the weight and collect
the gradients. When the size of the model is big, it would
cause severe overhead on storage and communication on the
driver, which is the “single-point” problem as we discussed in
Section 2. Second, PS2-Adam is faster than PS-Adam by 4.7×.
This is because PS-Adam lacks the ability to do server-side
computation. It has to pull the gradient as well as the model
onto each worker, update the model and push the model back
to the parameter server. This incurs significant overhead on
communication. However, PS2 utilizes the DCV abstraction
to enable server-side computation and thus reduces the com-
munication overhead.
Similar facts can be observed on CTR dataset. As shown

in Figure 9(b), PS2-Adam is 5× faster than PS-Adam and
55.6× faster than Spark-Adam. This is more impressive and
reasonable because the model size is much bigger and Spark-
Adam suffers from the “single-point” problem.

6.2.2 DeepWalk. We now evaluate the effects of DCV on
graph embedding using DeepWalk [23] as an example. The
result of Spark MLlib is not presented because it does not
support graph embedding. Figure 9(c) and 9(d) compare PS2-
DeepWalk with PS-DeepWalk on two graphs.
In Figure 9(c), PS2-DeepWalk gets 5× faster than PS-

DeepWalk on Graph1. The speedup comes from the DCV’s
ability of conducting server-side computation. As we dis-
cussed in Section 5.2, we can avoid transferring the embed-
ding vectors through the network with the DCV abstraction,
by conducting server-side “dot” operator. However, for PS-
DeepWalk we have to pull themodel vectors from the servers,
update them in each worker and push the updated vectors
back to the servers.
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Figure 10: End-to-end performance comparison among
PS2, DistML, Spark MLlib and Petuum over LR. The number
of executors/servers are 20.

In Figure 9(d), PS2-DeepWalk also outperforms PS-
DeepWalk, but the speedup is only 1.4×. The reason is that
on Graph2, we use 30 servers, which leads the speedup being
marginal. Specifically, the benefit of DCV can be degraded by
the large number of servers in PS2-DeepWalk. When comput-
ing the dot product of two DCVs, we have to collect partial of
the dot products from all servers. Thus the communication
cost increases when more servers are included. In contrast,
for PS-DeepWalk, using more servers leads to more balanced
communication when pulling/pushing the model. The trade-
off between the PS2-DeepWalk and PS-DeepWalk remains
elusive, and we leave this as an interesting future work.

6.3 End-to-End Comparison
We demonstrate the superiority of PS2 by presenting the
end-to-end comparison between PS2 and other ML systems.

6.3.1 Comparison On LR. Figure 10 compares the perfor-
mance of PS2, Spark MLlib, DistML and Petuum on KDDB
and KDD12 dataset on training LR using SGD. Adam is not
adopted because most of the these systems do not support
Adam. The result on CTR dataset is not presented since
Petuum cannot be deployed in an industrial environment
and DistML always fails to run on CTR dataset with some
bugs we cannot fix.

We have the following observations. First, PS2 converges
the fastest among the four systems. For example, PS2 gets



speedup by 1.6× and 2.3× over Petuum on KDDB and KDD12
dataset, respectively. The speedup mostly comes from the
careful engineering effort. When pulling model vectors from
parameter server, PS2 supports sparse communication and
only pulls the needed model parameters. However, Petuum
has to pull all of the model.
Second, Spark MLlib converges the slowest. As we dis-

cussed in Section 2, the bottleneck of Spark MLlib comes
from the communication step on the single-node driver. Thus
the time cost per iteration is much more expensive than pa-
rameter server-based solutions. Furthermore, DistML is not
robust. For example, the result of DistML on KDDB dataset
in Figure 10(a) cannot converge although we carefully tune
the hyperparameters.
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Figure 11: Evaluation over GBDT. The result of Spark ML-
lib is not presented since it runs out of memory on Gender
dataset.

6.3.2 Comparison On GBDT. Figure 11 shows the evalua-
tion over GBDT on Gender dataset. We can see that the
performance of PS2 is 3.3× faster than XGboost. To build
100 trees, PS2 requires 2435 seconds while XGBoost costs
7942 seconds. The main contribution of this improvement is
caused by the deployment of parameter server architecture.
One bottleneck of GBDT is to find out the best split point
for each tree node. In XGboost, this phase is conducted by
AllReduce, which generates vast communication cost and
causes the performance degradation. In PS2, the deployment
of parameter server and the DCV abstraction reduce the com-
munication cost and thus achieves speedup. We do not give
the comparison between PS2 and Spark MLlib since Spark
MLlib always fails due to the Out-of-Memory exception on
this dataset.

6.3.3 Comparison On LDA. We proceed to present the evalu-
ation results over LDA. We conduct these experiments using
two datasets, PubMED and App. For PubMED dataset, we
compare PS2 with Petuum, Glint and Spark MLlib. We set the
number of topics as 1000 for comparing Petuum and Glint
and 100 for Spark MLlib because Spark MLlib cannot deal
with large models. The result of DistML is not presented
because it always fails. For App dataset, we only report the
performance of PS2 to demonstrate its superiority since other
systems cannot handle it.

Figure 12(a) compares PS2 with Petuum and Glint. We
can see that the time cost of convergence are 386 seconds,
1440 seconds and 3500 seconds for PS2, Petuum and Glint,
respectively. That is, PS2 is 3.7× faster than Petuum and 9×
faster than Glint. Although they all employ the parameter
server architecture to distribute the communication, PS2 has
a more careful engineering effort for its sparse communica-
tion implementation and message compression technique.

Figure 12(b) shows the comparison between PS2 and Spark
MLlib. Spark MLlib requires 6894 seconds to converge and
PS2 is 17× faster than MLlib. This is due to the heavy com-
munication overhead on MLlib. PS2 uses multiple servers to
replace the single-node driver for managing the ML models,
thus removes the “single-node” bottleneck on the driver. Fig-
ure 12(c) further shows that PS2 can train LDA on billions of
documents thanks to the power of data processing in Spark
and efficient model management of parameter server.

6.4 Evaluation for Scalability
We report the scalability of PS2 using LR as an exam-
ple. Specifically, we examine: (1) How would PS2 perform
when number of workers/servers increases? (2) How would
PS2 perform when size of the model increases?

Number of Workers/Servers. Figure 13(a) presents the
performance of PS2 when using more computing resources.
We test it on CTR dataset with different number of workers
and servers. When there are 50 executors and 50 servers,
PS2 requires 4519 seconds to reach the objective value of
0.55. When the number of executors increases to 100, the
time cost decreases to 2865 seconds. Further, when using
100 executors and 100 servers, the time cost is 2199 seconds.
We can see that either increasing number of executors or
servers can boost the convergence. When there are more
executors, the computation cost on each worker decreases;
when more servers are involved, the communication cost
on each server is reduced. In addition, PS2 gets 2.05× faster
when we double the number of workers and servers, which is
a bit more than a linear speedup. We dig into the log and find
that, when resources are not enough (i.e., using 50 workers
and 50 servers), they are many network failures, thus slowing
down the convergence. When given more resources, there
are nearly no failures. This experiment demonstrates that
PS2 can obtain a good scalability.

Size of Model.We also present the scalability of PS2 with
respect to model size. We use 20 executors and 20 servers
to train LR on datasets with different number of features,
ranging from 40K to 60,000K. With a reference point, we also
include the scalability of Spark MLlib. The results are shown
in Figure 13(b). We can find the performance of Spark MLlib
decreases by 168× when the number of features increases
from 40K to 60, 000K . In contrast, the time cost per iteration
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Figure 12: Comparison of PS2 with other systems over LDA. We compare PS2 with Spark MLlib for K=100 since Spark ML-
lib runs out of memory for a large value.
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Figure 13: Evaluation of Scalability and Fault Tolerance.

of PS2 increases by 8.5×, from 0.2 seconds to 1.7 seconds.
Thus we conclude the performance of PS2 is highly scalable
with respect to model size.

6.5 Evaluation for Fault Tolerance
We demonstrate fault tolerance by task failures, which are
much more frequent than worker/server failures in a real-
world distributed environment. We simulate task failures by
randomly throwing exceptions with a given probability.
Figure 13(c) shows the performance of training LR using

20 workers and 20 servers with probabilities of task failure
as 0, 0.01 and 0.1. We can see that the performance gets
worse when more task failures happen. To finish the training
process, it requires 66 seconds for a normal execution. This
number changes to 74 seconds and 127 seconds when the
failure probability turns to 0.01 and 0.1. Also, all these three
cases can converge to the same solution. This indicates that
even in an extreme environmentwhere 10% tasks fail, PS2 can
still finish the training process in a reasonable time cost.

7 RELATEDWORK
Spark Ecosystem. Spark [32] is a popular distributed
dataflow system for big data analytics. In Spark, there are
two types of nodes, i.e., one driver and multiple executors.
The driver is responsible for scheduling executors and the

executors are used for data loading and processing. Resilient
Distributed Datasets (RDD) is the core abstraction of Spark,
which is a distributed memory that allows programmers to
perform in-memory computations on large clusters in a fault-
tolerant manner. Spark powers a stack of libraries including
Spark SQL [5], GraphX [11] and Spark Streaming [33] for
dealing with data from different sources. There are also some
other ML systems built on top of Spark. For example, Key-
StoneML [24] introduces pipeline optimization for ML tasks
with a high-level API and SystemML [6] introduces declara-
tive ML on top of Spark. MLlib* [34] further optimizes MLlib
by integrating MLlib with model averaging and AllReduce
implementation in the context of generalized linear models.

ML Systems Based on Parameter Servers. Parameter
server is a distributed key-value store and widely used for
ML. It is often used to manage the ML models for distributed
ML systems and provides pull/push operators for workers
to access the model parameters. There are many ML sys-
tems proposed based on parameter servers. For example,
LightLDA [30] uses parameter servers to store the “topic-
word” matrix in LDA and accelerate the training process.
Petuum [28] and Angel [18] are two general-purpose sys-
tems for distributed ML based on parameter servers. They
support many ML models like LR, SVM, LDA, etc.



Parameter Servers on Spark. To leverage both the bene-
fits of parameter servers for efficient ML training and Spark
for data processing, there are some other systems trying
to integrate Spark with parameter servers. Similar as PS2,
these systems use parameter servers to store model parame-
ters and Spark for processing training data. Glint [14] is an
asynchronous parameter server implementation on Spark
for LDA and DistML includes a monitor to manage the pa-
rameter servers and workers. However, these approaches are
not robust enough and provide limited primitive interfaces,
such as pull/push, which do not consider the diversity of
operations on ML models in parameter servers.

Deep Learning Systems.Deep learning is increasingly pop-
ular and many systems have been proposed like Tensor-
Flow [4] and MXNet [7]. To leverage the power of Spark
for efficient data processing, there are also some efforts to
integrate Spark with these deep learning sytems. Notable
examples include BigDL [9], TensorFlowOnSpark [2], Caf-
feOnSpark [1], MMLSpark [13], etc. In this paper, we focus on
using parameter servers to address the bottleneck of Spark, in
dealing with non-deep learning large models like LR, GBDT,
LDA and graph embedding. We leave the deep learning part
as future work.

8 CONCLUSIONS
In this paper, we proposed PS2 to bring Spark the power of
training large-scale ML models with high efficiency. PS2 uses
Spark for efficient data processing and parameter servers for
distributed model management. Themodification of PS2 over
Spark is transparent to Spark users, and does not hack the
core of Spark, by launching Spark and parameter server
as two separate applications. By analyzing operations on
ML model parameters in Tencent workloads, we identified
that simple pull/push operators are not enough. We further
extended PS2 with DCV, with a rich set of operators for op-
erating ML models. Experimental results on both public and
Tencent workloads show that PS2 can be up to 55.6× faster
than baseline systems. PS2 has now been deployed in Tencent
to accelerate ML tasks for many real-world applications.
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A HYPERPARAMETER SETTING
The hyperparameters for each workload used in the paper
are presented in Table 4.

Model Hyperparameters

LR
learning_rate = 0.618
mini_batch_fraction = 0.01
β1 = 0.9, β2 = 0.999, ϵ = 1e − 8

DeepWalk
length_of_random_walk = 8
batch_size = 512, learning_rate = 0.01
window_size = 4, negative_sampling = 5

GBDT

learning_rate = 0.1
number_of_trees = 100
max_depth = 7
size_of_histogram = 100

LDA α = 0.5, β = 0.01
Table 4: Settings of hyperparameters used in this paper.
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