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Abstract The increasing popularity of Apache Spark

has attracted many users to put their data into

its ecosystem. On the other hand, it has been

witnessed in the literature that Spark is slow when

it comes to distributed machine learning (ML). One

resort is to switch to specialized systems such as

parameter servers, which are claimed to have better

performance. Nonetheless, users have to undergo the

painful procedure of moving data into and out of

Spark. In this paper, we investigate performance

bottlenecks of MLlib (an official Spark package for ML)

in detail, by focusing on analyzing its implementation

of Stochastic Gradient Descent (SGD) — the workhorse

under the training of many ML models. We show

that the performance inferiority of Spark is caused by

implementation issues rather than fundamental flaws

of the Bulk Synchronous Parallel (BSP) model that

governs Spark’s execution: We can significantly improve

Spark’s performance by leveraging the well-known

“model averaging” (MA) technique in distributed ML.

Indeed, model averaging is not limited to SGD, and

we further showcase an application of MA to training

latent Dirichlet allocation (LDA) models within Spark.

Our implementation is not intrusive and requires light

development effort. Experimental evaluation results
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reveal that the MA-based versions of SGD and LDA

can be orders of magnitude faster compared to their

counterparts without using MA.
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1 Introduction

The increasing popularity of Spark has attracted

many users to put their data into its ecosystem [44].

However, Spark is generally believed to be slow when

it comes to distributed machine learning (ML) [49].

This implies significant data movement overhead for

machine learning users since they have to migrate their

datasets from Spark to specialized systems such as

TensorFlow [2] or XGBoost [11].

Nonetheless, it remains unclear why Spark is

slow for distributed ML. Previous work mainly

attributes this inefficiency to the architecture that

Spark adopts. Spark is architected based on the

classic Bulk Synchronous Parallel (BSP) model, where

execution is divided into stages and each stage employs

multiple worker nodes and a driver node, which is

responsible for coordination and synchronization of

workers. The driver node can be a bottleneck when

training large ML models, due to the overwhelming

communication overhead between the workers and the

driver. Nonetheless, is it a fundamental limitation that

is not addressable within the Spark architecture? If so,

what is the innovation in the architectures leveraged

by the specialized systems that address or bypass this

limitation? Meanwhile, is this the major reason for the

inefficiency of Spark? Are there other bottlenecks that

have not been identified yet? If so, are those bottlenecks



2 Yunyan Guo et al.

again due to the fundamental limitations of BSP or just

a matter of implementation issue?

In this paper, we aim to understand in more detail

why ML on Spark (in particular, MLlib [31], an official

Spark package for ML) is slow. We focus on analyzing

MLlib’s implementation of stochastic gradient descent

(SGD) – the workhorse under the training of many

ML models. Our exploration reveals that it is actually

implementation issues rather than fundamental barriers

that prevent Spark from achieving superb performance.

Although the original performance of MLlib is indeed

worse than that of specialized systems based on

parameter servers, such as Petuum [40] and Angel [22],

by slightly tweaking its implementation we are able

to significantly speed up MLlib on both public and

industrial-scale workloads, when training generalized

linear models (GLMs), such as logistic regression (LR)

and support vector machine (SVM), using SGD.

Specifically, we find that the update pattern of

models in MLlib is not efficient. In MLlib the

driver node is responsible for updating the (global)

model, whereas the worker nodes simply compute

the derivatives and send them to the driver. This

is inefficient because the global model shared by the

workers can only be updated once per communication

step between the workers and the driver.

We can address this issue by leveraging a simple yet

powerful technique called model averaging (MA) that

has been widely adopted in distributed ML systems [50,

51]. The basic idea behind MA is to have each worker

update its local view of the model and the driver

simply takes the average of the local views received

from individual workers as the updated global model. In

this way, the global model is updated many times per

communication step and therefore we can reduce the

number of communication steps towards convergence.

The incorporation of MA also enables other

optimizations. In particular, we can further improve

the communication pattern for distributed SGD. In

MLlib while the driver is updating the model, the

workers have to wait until the update is finished and

the updated model is transferred back. Apparently,

the driver becomes a bottleneck, especially for large

models. By using MA this bottleneck can be completely

removed — we do not need the driver per se. In essence,

MA can be performed in a distributed manner across

the workers [13]. Roughly speaking, we can partition

the model and have each worker maintain a partition.

There are two rounds of shuffling during MA. In the

first round of shuffling, each worker sends all locally

updated partitions to their dedicated maintainers.

Afterward, each worker receives all updates of the

partition it is responsible for and therefore can perform

MA for this partition. The second round of shuffling

then follows, during which each worker broadcasts its

updated partition to every other worker. Each worker

then has a complete view of the updated (global) model.

Compared with the centralized implementation MLlib

currently leverages, this distributed implementation

does not increase the amount of data in communication

— the total amount of data remains as 2 · k · m,

if the number of workers is k and the model size is

m. However, it significantly reduces the latency as we

remove the driver.

Our experimental evaluation on both public

workloads and industrial workloads shows that MA-

SGD – our MA-based version of SGD in MLlib – can

achieve significant speedup over MLlib. Furthermore,

it can even achieve comparable and often better

performance than specialized ML systems like Petuum

and Angel, and benefits from the Spark ecosystem.

Moreover, MA is not limited to distributed SGD.

As another example, we develop MA-LDA, an MA-

based version of training latent Dirichlet allocation

(LDA) models in MLlib. Again, we showcase that

MA-LDA can significantly outperform its counterpart

without using MA. In summary, this paper makes the

following contributions:

– We provide a detailed and in-depth analysis of the

implementations of MLlib and compare it with other

existing distributed ML systems.

– We identify performance bottlenecks when running

MLlib and propose using MA as a solution. As case

studies, we present two concrete implementations,

MA-SGD and MA-LDA, that target training GLMs

and LDA using Spark.

– We show that MA-SGD and MA-LDA can achieve

significant speedup over their non-MA versions

implemented in MLlib. As an extreme example, on

one of our datasets, we observed 1,000× speedup.

– We further compare MA-SGD and MA-LDA with

specialized ML systems, such as Petuum and Angel

that are powered by parameter servers. We show

that MA-SGD and MA-LDA can achieve close or

even better performance.

We reiterate that the goal of this paper is not to

introduce new distributed ML algorithms. Rather, we

study how to apply existing techniques (e.g., model

averaging) in Apache Spark so that we can significantly

improve Spark’s performance when it comes to ML

training. From a practitioner’s perspective, it is vital

to have an in-depth analysis for understanding the

performance bottleneck of MLlib/Spark and, more

importantly, how to improve it if possible. Our work

is novel in the sense that it is the first systematic study

on this topic, as far as we know. What we demonstrated
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is that, it is indeed possible to improve the performance

of MLlib/Spark on ML training, often by orders of

magnitude, using well-known techniques (e.g., model

averaging). We see several implications of our findings:

– MLlib/Spark can now be used to deal with a much

broader variety of ML training workloads that were

previously impossible. As a result, users no longer

need to move data in and out of Spark for such

workloads.

– Given the improved performance of MLlib/Spark,

it may be worthwhile to revisit previous work

that used MLlib/Spark as a baseline. An improved

MLlib/Spark may also raise the bar for future

research in the area of distributed ML systems and

drive the state-of-the-art to a new level.

– While our focus in this work is model averaging and

we have showcased its applicability and effectiveness

on two representative workloads (SGD and LDA),

it is by no means the end of the path. One

may want to further extend the work here in two

directions at least. First, one can further study

whether MA can be used for other workloads.

Indeed, our study on using model averaging for LDA

is new and we are not aware of any previous work.

Second, one can further study the applicability of

other techniques beyond model averaging to further

improve MLlib/Spark.

Applicability of Model Averaging. Although there

is theoretical guarantee on the convergence when using

model averaging for convex problems [52], there is no

such guarantee for general non-convex optimization

problems. This is a major limitation regarding the

applicability of model averaging. Indeed, this is one

reason that we focused on GLMs when applying MA-

SGD, as we did observe convergence issues when we

tried to use MA-SGD for training DNNs.1 However, as

we have showcased with MA-LDA, model averaging can

guarantee convergence on certain non-convex problems,

though we admit that this is on a case-by-case basis. It

is actually our hope that our work in this paper can

stimulate further research in this direction.

Paper Organization. We start by analyzing the

implementations of MLlib in Section 2, to identify

its performance bottlenecks. We propose to use MA

as a solution to these bottlenecks and study its

application on SGD in Section 3. MA is not tied

to SGD, though. To demonstrate this, in Section 4

we present another application of MA for training

LDA models. In Section 5, we further evaluate the

1 It remains an open question to ensure convergence when
using model averaging (perhaps with an implementation
different from the current MA-SGD) to train deep models.

performance of MA-SGD and MA-LDA, the two MA-

based implementations studied in Sections 3 and 4,

and compare it with other competitive systems. We

summarize related work in Section 6 and conclude the

paper in Section 7.

2 Performance Bottlenecks in MLlib

In this section, we examine the implementation of

MLlib and analyze its performance bottleneck. We

focus on distributed SGD [35] , one of the most popular

optimization techniques that has been widely used

in ML model training. In the following, we start by

providing some background.

2.1 Gradient Descent and Its Variants

Consider the following setting when training ML

models. Given a classification task with X representing

the input data, find a model w that minimizes the

objective function

f(w,X) = l(w,X) +Ω(w) (1)

Here, l(w,X) is the loss function, which can be

0-1 loss, square loss, hinge loss, etc. Ω(w) is the

regularization term to prevent overfitting, e.g., L1

norm, L2 norm, etc.

Gradient descent (GD) is an algorithm that has

been widely used to train machine learning models that

optimize Equation 1. In practice, people usually use a

variant called mini-batch gradient descent (MGD) [14].

We present the details of MGD in Algorithm 1.

Algorithm 1: MGD {T , η w0, X}
for Iteration t = 1 to T do

Sample a batch of data XB ;
Compute gradient as gt =

󰁓
xi∈XB

∇l(xi, wt−1);
Update model as
wt = wt−1 − η · gt − η ·∇Ω(wt−1);

Here, T is the number of iterations, η is the learning

rate, and w0 is the initial model. As illustrated in

Algorithm 1, MGD is an iterative procedure. It repeats

the following steps in each iteration until convergence:

(1)Sample a batch of the training dataXB ; (2)Compute

the gradient of Equation 1 using XB and the current

model wt−1; (3)Use the gradient to update the model.

The executions of GD and SGD (stochastic gradient

descent [24], another popular variant of GD) are similar.

Essentially, GD and SGD can be considered as special

cases of MGD. Specifically, when the batch size is the

entire data (i.e., XB = X), it is GD; when the batch

size is 1, it is SGD. Without loss of generality, we focus

our discussion on MGD.
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2.2 Distributed MGD In MLlib

The sequential execution of MGD is usually not feasible

for large datasets and models. Algorithm 2 outlines

the implementation of a distributed version of MGD

in MLlib. Specifically, there is a master (i.e., the driver

in Spark) to partition data and schedule tasks. There

are multiple workers, each dealing with an individual

partition. Also, there is a central node (i.e., again the

driver in Spark) to aggregate the gradients received

from the workers.

As shown in Algorithm 2, the master first splits data

into multiple partitions with a round-robin partitioning

strategy. It then schedules each worker to load a

partition and launch a training task. Execution involves

multiple stages. In each stage, each worker first pulls the

latest model from the central node. It then samples a

batch from its local data, computes the gradient using

the latest model, and sends the gradient to the central

node. The central node finally aggregates the gradients

received from the workers and updates the model. This

procedure repeats until the model converges.

2.3 Performance Analysis

We next present a more detailed analysis to understand

bottlenecks in MLlib. We ran MGD to train a linear

support vector machine (SVM) using the kdd12 dataset

described in Table 1. The experiment was conducted

on a cluster of nine nodes with one node serving as the

driver and the others serving as the executors in Spark

(see Figure 1). 2 Figure 2(a) presents the gantt chart3

that tracks the execution of the nodes. The x-axis

represents the elapsed time (in seconds) since the start

of the execution. The y-axis represents the activities

of the driver and the eight executors as time goes by.

Each colored bar in the gantt chart represents a type of

activity during that time span that is executed in the

corresponding cluster node (i.e., driver or executor),

whereas different colors represent different types of

activities. We can identify two obvious performance

issues by examining the gantt chart in Figure 2(a):

– (B1) Bottleneck at the driver — at every stage

when the driver is executing, the executors have

to wait. Similar observations have been made in

previous work, too [8].

– (B2) Bottleneck at the intermediate aggregators,

i.e., the executors that perform partial aggregations

2 We assign one task to each executor because when we
increase the number of tasks per executor, the time per
iteration increases due to the heavy communication overhead.
3 https://en.wikipedia.org/wiki/Gantt chart

Type	equation	here.When you first want to do	a	SGD	in	Spark	MLlib,	thedriver first broadcasts themodel to

executors;	then when executors get themodel from thedriver,	they use their own data and themodelt	o	compute

thegradient;	at	last,	thedriver collects thegradient from all	theexecutors and update	themodel.	Heredriver may

becomea	bottleneck because it has to take care	of all	thegradients from thedriver.	So	Spark	use treeAggregate()	

to collect thegradients.	Basically,	thedriver selects someof theexecutors to collect part of them.	For example,	

here wehave 8	executors,	Spark	will	use two of theexecutors to collect thegradients and thedriver then collect

results from these two executors.	Then we iterate this process.

Aggregate gradient using treeAggregate

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Executor

Driver

Broadcast model

Fig. 1 Communication patterns of distributed MGD on
Spark MLlib.

of gradient — at every stage when these executors

are running, the other nodes have to wait.

The bottleneck at the driver is therefore easy

to understand: the executors simply cannot proceed

because they have to wait for the driver to finish

updating the model. Moreover, the bottleneck at the

intermediate aggregators is also understandable due to

the hierarchical aggregation mechanism employed by

MLlib, although it shifts some workload from the driver

— the latency at the driver can be even worse without

this hierarchical scheme.

Algorithm 2: Distributed MGD {T , η, w0, X,

m}
Master:
Issue LoadData() to all workers;
Issue InitialModel(w0) to the central node;
for Iteration t = 0 to T do

Issue WorkerTask(t) to all workers;
Issue ServerTask(t) to the central node;

Worker r = 1, ..., m:

Function LoadData():
Load a partition of data Xr;

Function WorkerTask(t):
Get model wt−1 from the central node;
ComputeAndSendGradient(wt−1)

Function ComputeAndSendGradient(wt−1):
Sample a batch of data Xbr from Xr;
Compute gradient grt ←

󰁓
xi∈Xbr

∇l(wt−1, xi);
Send gradient grt to the central node;

Central node:
Function InitialModel(w0):

Initialize model as w0;

Function ServerTask(t):
AggregateGradientsAndUpdateGlobalModel();

Function
AggregateGradientsAndUpdateGlobalModel()

Aggregate gradient as gt ←
󰁓m

r=1 g
r
t ;

Update the model as
wt ← wt−1 − η · (gt)− η ·∇Ω(wt−1);

https://en.wikipedia.org/wiki/Gantt_chart
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3 MA-SGD: SGD with Model Averaging

Model averaging (MA) is a well-known optimization

strategy for speeding up SGD [50, 51]. Instead of

sending and aggregating gradients, each worker can

actually perform MGD over its local partition of the

data and sends the updated (local view of the) model

to the central node. The central node then updates the

(global) model based on averaging the (local) model

received from the workers. Algorithm 3 illustrates these

two related primitives that replace their counterparts in

Algorithm 2. It has been shown that using MA in SGD

offers the same convergence guarantee as standard SGD

on convex problems [36].

Algorithm 3: Model-Averaging primitives

Worker r = 1, ..., m:

Function ComputeAndSendLocalModel(wt−1):
Compute model wr

t via MGD(T ′, η, wt−1, Xr);
// T ′ is the number of iterations in each worker.
Send local model wr

t to the central node;

Central node:
Function
AggregateLocalModelsAndUpdateGlobalModel()

Aggregate the models as wt ← f(
󰁓m

r=1 w
r
t );

Remark.We name the two paradigms (in Algorithms 2

and 3) SendGradient and SendModel, respectively.

The difference between the two paradigms lies in the

number of updates to the global model within one

single communication step between the workers and

the central node. If T ′ = 1, i.e., only one iteration

is allowed in MGD, the number of updates made

by SendGradient and SendModel will be exactly the

same. However, if T ′ ≫ 1, which is the typical case,

SendModel will result in many more updates and thus

much faster convergence.

Implementation. Most parts of our implementation

are quite straightforward. We basically replace the

computation of gradients in each executor by

model updates. And in the communication step, we

send model updates instead of gradients. However,

SendModel can be inefficient when the regularization

term (typically L2 norm) is not zero. In this case,

frequent updates to the local view of the model can

be quite expensive when the model size is large. To

address this, we use a threshold-based, lazy method

to update the models following Bottou [10]. Our

implementation does not require any change to the

core of Spark. Instead, we implement our techniques

leveraging primitives provided by Spark.

Analysis. Figure 2(b) presents the gantt chart of

MLlib after incorporating our implementation of

SendModel, by rerunning the experiment described in

Section 2.3. One can observe that the computation

time of Figure 2(b) is longer than that of Figure 2(a),

since it processes the whole dataset, instead of a

mini-batch. However, for each data instance, the

computational tasks of SendModel are similar to those

of SendGradient — it is just computing weights of

the model versus computing gradients! Nonetheless, the

number of stages in Figure 2(b) should be much smaller

compared with Figure 2(a) if we extend the x-axes of

both charts to the time of convergence, which suggests

a much faster convergence of SendModel.

3.1 Optimization Powered by MA: Distributed

Aggregation using AllReduce

The communication pattern exhibited in Figure 2(b)

remains the same as that in Figure 2(a): Even if we now

aggregate the (weights of) the models instead of the

gradients, we still follow the hierarchical aggregation

in MLlib using the treeAggregate function. This,

however, turns out to be unnecessary. Recall the

communication pattern in SendGradient: Executors

send the gradients to the driver; the driver sends the

updated model back to the executors. However, in MA-

SGD, the communication pattern remains the same

but the gradients are replaced by the models. Because

each executor is in charge of its local model, it seems

redundant that the driver first collects the (aggregated)

model updates from the executors and then broadcasts

the model updates back to the executors.

To address this problem, we implement a new

communication pattern in Spark. The basic idea is to

partition the global model and let each executor own

one partition. It is also possible to have one executor

own multiple partitions. However, for ease of exposition,

we assume that each executor just owns one partition.

The owner of a model partition is responsible for its

maintenance (using MA). Note that the ownership is

logical rather than physical: Each executor still stores

a physical copy of the current version of the model

(which includes all partitions), but it only performs

MA over the logical partition it owns. In this way,

the executors no longer need to wait for the driver

to broadcast the averaged model. In other words, the

driver no longer needs to play the role of the central

node in Algorithm 2. In fact, there will be no notion of a

specific central node in the distributed MA architecture

we shall propose. Moreover, given that we do not

need the driver to take charge of MA, the hierarchical

aggregation scheme presented in Figure 1 is also not

necessary. As a result, we can have all the executors

participate in the distributed maintenance of the global

model simultaneously and homogeneously.
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Executor 5
Executor 6
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Driver

Executor 1
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Driver

Executor 1
Executor 2
Executor 3
Executor 4
Executor 5
Executor 6
Executor 7
Executor 8

Driver
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(a) MLlib (b) MLlib + model averaging (c) MA-SGD
Time (s) Time (s) Time (s)

Fig. 2 Gantt charts for (a) MGD executions in MLlib (i.e., SendGradient), (b) MLlib with model averaging (i.e., SendModel),
and (c) MA-SGD. A red vertical line represents the start of a stage in Spark, whereas the subsequent green vertical line
represents its end.

There are two main technical challenges in our

design. First, updates to a partition of the global model

can be scattered across the executors. For example, in

Figure 3, we have eight executors E1 to E8, each owning

one partition, which is 1/8 of the global model M . Let

us number those partitions fromM1 toM8. Considering

the partition M1 in E1, although it is owned by E1,

updates toM1 can come from all E1 to E8, because data

and model are partitioned independently. Data points

that can contribute to the weights of M1 (i.e., data

points with nonzero feature dimensions corresponding

to those weights) can be located on all the executors.

To perform MA over a local partition, the owner

has to collect updates to this partition from all the

other executors. Second, to compute the model updates

(for local views of all model partitions) as in the

SendModel paradigm, an executor has to compute the

gradients, which depend on not only the local data

points but also the latest version of the entire global

model (not just the local partition of the model), again

due to the “inconsistency” between data partitioning

and model partitioning. One could, in theory, avoid

this inconsistency issue by carefully partitioning data

points based on their nonzero feature dimensions and

then partitioning the model with respect to the data

partitions. However, this is data-dependent and is

difficult to achieve in practice due to issues such as

data skew — one may end up with too many partitions

with a highly skewed distribution of partition sizes.

Moreover, data need to be randomly shuffled and

distributed across the workers. We use a two-phase

procedure to address these two challenges (see Figure 3

and Algorithm 4 for illustration):

Reduce-Scatter. In the first stage, after each executor

has done with updating its model locally, it sends

partitions other than the one it owns to their owners,

respectively. Continuing with our previous example,

E1 updates its local copies of M1 to M8 and sends

the updated versions of M2, ..., M8 to E2, ..., E8,

respectively. Afterward, each executor has received all

updates to the partition it owns — it can then perform

model averaging for the partition.

AllGather. In the second stage, after each executor

finishes model averaging over the partition it owns, it

broadcasts that partition to everyone else. Again, using

the previous example, E1 sends M1 (after finishing

model averaging) to E2, ..., E8. Afterward, each

executor now has refreshed versions of all partitions of

the global model. This stage is motivated by the work

of Thakur et al. [37].

Again, our implementation does not require changes

to the core of Spark. Specifically, we use the shuffle

operator in Spark to implement both stages: One

can write different shuffling strategies by specifying

the source(s) and destination(s) of each partition.4

Figure 2(c) presents the gantt chart of MLlib*

when repeating the previous experiment. As expected,

all executors are now busy almost all the time

without the need of waiting for the driver. By

just looking at Figure 2(c), one may wonder if

this is a correct BSP implementation. For example,

in the first communication step, it seems that E1

started its AllGather phase before E8 finished its

Reduce-Scatter phase, which should not happen in a

BSP implementation. We note this is just an illusion:

E8 was the slowest worker in the first communication

step, and therefore its AllGather phase immediately

started after its Reduce-Scatter phase — there is no

visible gap shown on the gantt chart. In other words,

all workers started their AllGather phases at the same

timestamp, i.e., the first vertical line in Figure 2(c).

It is worth to point out that, while the gantt chart

in Figure 2(c) looks much more cluttered compared

4 https://0x0fff.com/spark-architecture-shuffle/

https://0x0fff.com/spark-architecture-shuffle/
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Type	equation	here.When	you	first	want	to	do	a	SGD	in	Spark	MLlib,	the	driver	first	broadcasts	the	model	to	executors;	

then	when	executors	get	the	model	from	the	driver,	they	use	their	own	data	and	the	modelt	o	compute	the	gradient;	at	

last,	the	driver	collects	the	gradient	from	all	the	executors	and	update	the	model.	Here	driver	may	become	a	bottleneck	

because	it	has	to	take	care	of	all	the	gradients	from	the	driver.	So	Spark	use	treeAggregate()	 to	collect	the	gradients.	

Basically,	the	driver	selects	some	of	the	executors	to	collect	part	of	them.	For	example,	here	we	have	8	executors,	Spark	

will	use	two	of	the	executors	to	collect	the	gradients	and	the	driver	then	collect	results	from	these	two	executors.	Then	

we	iterate	this	process.

Reduce-Scatter AllGather

AllReduce implementation

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

Local Model

Fig. 3 AllReduce implementation using shuffle on Spark.

with Figure 2(b), the actual amount of data exchanged

within each communication step actually remains the

same: If we have k executors and the model size is

m, then the total amount of data communicated is

2 · k · m for both cases.5 This may seem puzzling as

one may expect that the two rounds of shuffling we

employed in MA-SGD would significantly increase the

data exchanged. This is, however, just an illusion. In

both scenarios, the global model is exactly sent and

received by each executor twice. The net effect is that

a communication step (with two rounds of shuffling) in

MA-SGD can finish the same number of model updates

as a step in the “MLlib + MA” mechanism can but the

latency is much shorter.

As a side note, the two names Reduce-Scatter

and AllGather have borrowed from MPI (acronym

for “Message Passing Interface”) terminology, which

represent MPI operators/primitives with the same

communication patterns plotted in Figure 3. Moreover,

the entire communication pattern combining the two

stages is akin to AllReduce, another MPI primitive.

We refer readers to the work by Thakur et al. [37] for

more details about these MPI primitives.

4 MA-LDA: LDA with Model Averaging

Model averaging is not limited to SGD. We now

demonstrate this by showcasing another application of

MA in distributed latent Dirichlet allocation (LDA).

LDA is perhaps the most popular formulation in

topic modeling, with wide applications in various areas

such as natural language processing and information

retrieval. Distributed computation is inevitable when

LDA models become large. Existing work mainly

focuses on paralleling Monte Carlo Markov Chain

(MCMC), whereas parallelism of Variational Inference

(VI), another popular optimization technique for LDA,

has yet not been studied in depth.

We propose MA-LDA, a distributed framework for

training LDA models. MA-LDA is based on a stochastic

5 We ignore the intermediate aggregators in Figure 2(b).

Algorithm 4: MA-SGD {T , η w0, X, m}
Master:
Issue LoadData() to all workers;
Issue InitialModel(w0) to all workers;
for Iteration t = 0 to T do

Issue UpdateModel() to all workers;
Issue Reduce-Scatter() to all workers;
Issue AllGather() to all workers;

Worker r = 1, ..., m:

Function LoadData():
Load a partition of data Xr;

Function InitialModel(w0):
Initial local model as w0;

Function UpdateModel():
// We assume local model is wr;
for each data point x in Xr do

Compute gradient: gr ← ∇l(wr, x);
Update model:
wr ← wr − η · gr − η ·∇Ω(wr);

Function Reduce-Scatter():
// Break the model into pieces and shuffle them.
Partition local model wr into m pieces, namely
wr

1 , w
r
2 , ..., w

r
m;

for i = 1 to m do
Send partition wr

i to worker i;

// Perform model averaging for partition r
// (after receiving updates from all other
workers).

pr ← 1
m

󰁓m
j=1 w

j
r;

// The size of pr is 1/m of the size of whole
model wr.

Function AllGather():
// Send pr to all workers.
for i = 1 to m do

Send pr to worker i;

// Concatenate partitions from all the workers in
order.

wr ← (p1, ..., pm);

version of VI (SVI), combined with MA. We can

prove that applying MA in SVI does not sabotage

its convergence.6 In fact, MA significantly reduces the

amount of communication between the computational

workers and therefore dramatically speeds up the

convergence of SVI. As before, we start by providing

some background.

4.1 Variational Inference for LDA

Given an input corpus X and the number of topics K,

LDA aims to model each topic as a distribution over

the vocabulary V . We use w to represent topic-level

parameters. w is a K × V matrix. Also, LDA assumes

that each document is a mixture over topics, and

6 However, the proof is very lengthy and technical, and thus
is omitted here.



8 Yunyan Guo et al.

LDA infers the topic assignment of each word in each

document. z represents these data-level parameters.

Exact inference of the real distribution p(w, z|X)

is intractable with the massive corpus. Variational

inference (VI) aims for minimizing the distance between

p(w, z|X) and a variational distribution q(w, z) in terms

of their KL-divergence. This optimization problem is

equivalent to maximizing the “evidence lower bound”

(ELBO):

ELBO = Eq[log p(w, z,X)]−Eq[log q(w, z)] (2)

It is common to use SVI [16] – a stochastic, online

version of VI – when dealing with huge or streaming

data. SVI focuses on training w and treats z as part of

data information. In each iteration, it uses a mini-batch

corpus to calculate the estimated natural gradient of w.

Optimization of the ELBO is achieved by using natural

gradient ascent on w. It is a special case of MGD, where

the natural gradients are gathered in the same way as

standard gradients.

4.2 Distributed SVI in MLlib and MA-LDA

MLlib implements a distributed version of SVI. As

shown in Algorithm 5, its main structure is similar

to the SGD implementation by MLlib (Algorithm 2),

which follows the SendGradient paradigm. The

difference lies in the additional computation of

Eq[logW ] (via the DirichletExpectation function) by

the central node (i.e., the driver in Spark). The

computation is expensive, which makes the bottleneck

at the driver (i.e. B1 in Section 2.3) even worse.

Inspired by MA-SGD (Algorithm 3), we design

MA-LDA, an MA-based variant for distributed SVI

following the SendModel paradigm. Algorithm 6

presents the details. The optimization techniques based

on Reduce-Scatter and AllGather are again suitable

here. Compared to MA-SGD, the implementation

of the function UpdateModel alters: In MLlib’s

implementation (Algorithm 5), only the driver is

responsible for computing Eq[logW ]; in MA-LDA,

however, the computation is distributed across

the workers. rowSum function is to calculate the

sum of each row(a parameter vector of Dirichlet

distribution). The function PartDirExp illustrates

how each worker computes its partial version of

Eq[logW ] by only utilizing its local data partition. To

reduce computation intensity, we further develop two

optimization strategies here: (1) lazy update and (2)

low-precision computation.

Lazy Update. Documents in practice are usually

sparse: Each document only covers a small fraction of

Algorithm 5: Distributed SVI LDA{T , η w0,

X, m}
Master:
Issue LoadData() to all workers;
Issue InitialModel(w0) to the central node;
for Iteration t = 0 to T do

Issue DirichletExpectation(wt) to the central
node;

Issue WorkerTask(t) to all workers;
Issue ServerTask(t) to the central node;

Worker r = 1, ..., m:

Function LoadData():
Load a partition of data Xr;

Function WorkerTask(t):
Get Eq[logWt] from the central node;
ComputeAndSendGradient(Eq[logWt]);

Function ComputeAndSendGradient(Eq[logWt]):
Sample a batch of data Xbr from Xr;
Compute gradient
g̃rt ←

󰁓
xi∈Xbr

∇̃l(Eq[logWt], xi);
Send gradient g̃rt to the central node;

Central node:
Function InitialModel(w0):

Initialize model as w0;

Function DirichletExpectation(w):
for each data point wk,v in w do

Eq[logWk,v] = Ψ(wk,v)− Ψ(
󰁓V

i=1 wk,i);

Return Topics matrix Eq[logW ];

Function ServerTask(t):
AggregateGradientsAndUpdateGlobalModel();

Function
AggregateGradientsAndUpdateGlobalModel()

Aggregate gradient as g̃t ←
󰁓m

r=1 g̃
r
t ;

Update the model as wt ← wt−1 + η · (g̃t);

words in the entire vocabulary. This sparsity property

allows MA-LDA to focus on a subset with only nonzero

entries in the Eq[logW ] matrix that corresponds to the

local corpus of each worker. This has been highlighted

in the implementation of PartDirExp(). Although the

natural gradient g̃r is often dense, the update of w,

which is typically a large matrix, can be acted in a

lazy, sparse manner: Only entries required by the next

PartDirExp() call need to be updated.

Low Precision Computation. The most time-

consuming step in UpdateModel is the computation

of Eq[logW ]. For each topic k ∈ [K], q(Wk|wk) ∼
Dirichlet(wk), which is a vector of length V . By

definition, Eq[logWk,v] = Ψ(wk,v) − Ψ(
󰁓V

i=1 wk,i),

where Ψ is the digamma function, i.e., the logarithmic

derivative of the gamma function.7 To improve the

computation efficiency of Ψ , we use a recursive

approach as follows.

7 https://en.wikipedia.org/wiki/Digamma function

https://en.wikipedia.org/wiki/Digamma_function
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Algorithm 6: MA-LDA {T , η w0, X, m}
Master:
Issue LoadData() to all workers;
Issue InitialModel(w0) to all workers;
for Iteration t = 0 to T do

Issue UpdateModel() to all workers;
Issue Reduce-Scatter() to all workers;
Issue AllGather() to all workers;

Worker r = 1, ..., m:

Function LoadData():
Load a partition of data Xr;

Function InitialModel(w0):
Initial local model as w0;

Function UpdateModel():
// We assume local model is wr;
Compute rowSum(wr);
Sample a batch of data Xbr from Xr;
for each data point x in Xbr do

Compute PartDirExp(wr, x, rowSum(wr));
Compute gradient: g̃r ← ∇̃l(Eq[logW r], x);
Update model: wr ← wr + η · g̃r;
Update sums of rows: rowSum(wr) ←
rowSum(wr) + rowSum(η · g̃r);

Function PartDirExp(w, x, rowSum(w)):
for k = 1 to K do

for each v exists in x do
Eq[logWk,v] =
Ψ(wk,v)− Ψ(rowSum(w)k);

Return Eq[logW ];

Function rowSum(v):
// v is a vector;
Return the sum of all values in vector v;

Given a scalar constant c > 1,

Ψ(x) =

󰀫
lnx− 1

2x − 1
12x2 + 1

120x4 −O( 1
x6 ), x > c;

Ψ(x+ 1)− 1
x , 0 < x ≤ c.

The precision of Ψ(x) so computed depends on the

choice of c [7]. MA-LDA chooses a relatively small

c to seek a trade-off between computation efficiency

(measured by the number of recursions) and precision.8

5 Experimental Evaluation

In this section, we compare MA-based algorithms and

other systems by conducting an extensive experimental

evaluation using both public datasets and Tencent

datasets. Our goal is not only to just understand the

performance improvement over MLlib, but we also want

to understand where MLlib and MA-based algorithms

stand in the context of state-of-the-art distributed

ML systems. Although these specialized systems have

8 The default value of c is 49 to guarantee a relative error
of 1e−8, though c = 9 is enough for a relative error of 1e−5.

claimed to be much better than MLlib, the reported

results were based on different experimental settings

or even different ML tasks. We are not aware of any

previous study with a similar level of completeness, and

we hope our results can offer new insights to developing,

deploying, and using distributed ML systems.

Before we present the details, we summarize our

results and observations as follows:

– We find that specialized ML systems based

on parameter servers, Petuum and Angel, do

significantly outperform MLlib, as was documented

in the literature.

– By breaking down the improvements from the two

techniques we used, model averaging and distributed

aggregation, we observe a significant speedup of MA-

based algorithms over MLlib algorithms.

– We further show that MA-based algorithms

can achieve comparable and sometimes better

performance than Petuum and Angel that are based

on parameter servers.

5.1 Experimental Settings

Clusters. We used two different clusters in our

experiments:

– Cluster 1 consists of 9 nodes (connected with a 1-

Gbps network), where each node is configured with

2 CPUs and 24 GB of memory. And each CPU has

8 cores.

– Cluster 2 consists of 953 nodes, with 345 TB of

memory in total. Each node has 2 CPUs, and each

CPU has 10 cores. The nodes are connected with a

10-Gbps network.

GLMs Workloads and Metrics. We evaluate

different distributed ML systems for training GLMs.

Specifically, we train SVM on five datasets (details

below), with and without L1/L2-norm regularization.9

However, the performances of using L1 and L2 norms

are very similar under our MA-based implementation.

The major difference between using L1 and L2 norms

is that, the updates when using L2 norms are dense,

whereas the updates when using L1 norms are sparse.

Nonetheless, in our MA-based implementation, we have

optimized the updates of L2 norms by using lazy update.

As a result, the updates when using L2 norms under our

implementation are now also sparse. Therefore, we do

not observe a performance gap between using L1 and

L2 norms. For this reason, in this paper, we will only

show experimental results based on L2 norms.

9 SVM is a representative for GLMs. In fact, linear models
share similar training process from a system perspective.
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We use four public datasets from MLBench [47], as

well as the dataset WX from Tencent. Table 1 presents

the statistics of these datasets.10

The diversity of these datasets lies in the following

two aspects. First, the dimensions of the features

differ: the datasets avazu and url have relatively lower

dimensions, whereas the datasets kddb, kdd12, and WX

have higher dimensions. Second, the datasets avazu,

kdd12, and WX are determined, whereas the datasets

url and kddb are underdetermined (i.e., there are more

features than data points). For the case of training

GLMs, the diversity presented in these datasets offers

a good chance to probe and understand the strengths

and weaknesses of different systems.

We measure the value of f(w,X) in Equation 1 as

time elapses since model training aims for minimizing

the objective function. Note that the comparison is

fair in the context of training GLMs: All participating

systems should eventually converge to the same (global)

minimum as the objective function is convex. In

addition to the elapsed time taken by each system

towards convergence, we also measure the number of

communication steps when comparing MLlib-SGD and

MA-SGD. The speedup is calculated when the accuracy

loss (compared to the optimum) is 0.01.

LDA Workloads and Metrics. To evaluate different

ML systems for LDA, we use the New York Times

(NYTimes) and the Public Medicine (Pubmed) datasets

from the UCI Machine Learning Repository, as well as

the dataset from Common Crawl.11 Table 1 summarizes

the statistics of these datasets.

The datasets contain documents with different

lengths. The average length of the documents in PubMed

is 90, whereas the ones in NYTimes and CommonCrawl

are 230 and 400. This diversity in document length

serves the purpose of testing both the strengths

and weaknesses of different systems when training

LDA. Long documents can test the inference quality

of different algorithms; on the other hand, short

documents can result in lower computation costs but

higher communication costs.

When comparing LDA in MA-LDA with MLlib-

LDA, we use the perplexity on the held-out test set

as the metric, which evaluates the performance and

accomplishment of model fitting. Lower perplexity

means the model has less confusion to infer topic

proportions for each word in test data.

Angel-LDA (LDA*) is a state-of-the-art system

that implements the distributed MCMC algorithm

10 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
11 https://archive.ics.uci.edu/ml/machine-learning-datasets/
and http://commoncrawl.org

Table 1 Dataset statistics.

Dataset #Instances #Features Size
avazu 40,428,967 1,000,000 7.4GB
url 2,396,130 3,231,961 2.1GB
kddb 19,264,097 29,890,095 4.8GB
kdd12 149,639,105 54,686,452 21GB
WX 231,937,380 51,121,518 434GB

Dataset #Document Vocabulary Size
NYTimes 269,656 102,660 0.5GB
PubMed 8,118,363 141,043 4.4GB
CommonCrawl 1,000,000 100,000 2.0GB

for training LDAs with parameter servers [43]. Using

the parameter-server architecture, Angel-LDA pushes

certain computation to the (parameter) server side

to balance between computation and communication

costs. Angel-LDA keeps calculation for certain types

of data points on the servers. As a result, the

amount of calculation assigned to the workers becomes

less. Moreover, the amount of data transmitted to

the workers is also less. It also introduces a well-

designed hybrid sampler. As reported by Yu et al. [43],

the performance of Angel-LDA is much better than

Petuum-LDA . We therefore choose Angel-LDA as

a representative of parameter-server solutions and

compare it with MA-LDA. Unlike MLlib-LDA, Angel-

LDA uses log-likelihood as the metric over the training

set. For fairness, we therefore also evaluate log-

likelihood when comparing MA-LDA and Angel-LDA.

Participating Systems and Configurations. In

our evaluation, we compare four distributed ML

systems: (1) Petuum 1.1, (2) Angel 1.2.0, (3) Spark

MLlib 2.3.0, (4) MA-MLlib (i.e., MLlib with our MA-

based algorithms). To ensure fairness when comparing

different systems, we tune the configuration of each

system in our best effort. For example, we tuned

all parameters specified in the official guidelines for

tuning Spark, such as the number of tasks per core,

serialization method, garbage collection, etc.12

Hyperparameter Tuning. For each system, we also

tune the hyperparameters by grid search for a fair

comparison. Specifically, we tuned the batch size and

learning rate for Spark MLlib. For Angel and Petuum,

we tuned batch size, learning rate, as well as staleness.

5.2 Evaluation on Public Datasets

We evaluate MA-MLlib using the public datasets in

Table 1 with the following goals in mind:

– Revisit results in previous work regarding the

performance gap between MLlib and parameter

servers.

12 http://spark.apache.org/docs/latest/tuning.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/machine-learning-datasets/
http://commoncrawl.org
http://spark.apache.org/docs/latest/tuning.html
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– Study performance improvement of MA-MLlib over

MLlib brought by MA and distributed aggregation.

– Compare MA-MLlib and parameter servers.

5.2.1 Model Quality

We first study the quality of the ML models returned by

different systems. Since the objective function of GLMs

is convex, all participating systems should converge

to the same global optimum. On the other hand, the

objective function of LDA is non-convex. As a result,

different systems may result in models converging to

different local optima. Therefore, we need to compare

the LDA training quality of MA-LDA with MLlib-LDA

and Angel-LDA.

We start by comparing the model quality of MLlib-

LDA and MA-LDA. We fix the topic size and set

other hyperparameters (i.e., document concentration

and topic concentration) using default values to make

comparison fair. Since different batch sizes can lead

to different model quality [17], we use various batch

sizes in our experiments. For each batch size, we ran

8 workers for four hours and then compute the final

perplexity using the test data sets. Table 2 reports the

final perplexity values with different batch sizes. We

make the following observations:

– MA-LDA can achieve lower perplexity than MLlib-

LDA for most of the cases.

– Across different batch sizes, the lowest perplexity of

MA-LDA is lower than that of MLlib-LDA.

– The proper batch size (w.r.t. the lowest perplexity)

of MA-LDA is larger than that of MLlib-LDA.

We see that MA-LDA has better model quality

(w.r.t. the proper batch size) than MLlib-LDA. The

proper batch size of MA-LDA is also larger, implying

more local computation work on each worker but less

communication overhead.

We next compare MA-LDA with Angel-LDA. We

run Angel-LDA on 8 machines (8 workers and 8

parameter servers) and stop after 100 iterations (i.e.,

epochs) with tuned hyperparameters. For MA-LDA, we

chose the best batch size and tuned learning rate for

each data set.13 MA-LDA converges after 10 iterations,

and we then record its log-likelihood over the training

set. Table 3 summarizes the results. The results Angel-

LDA achieves on NYTimes and PubMed is consistent with

that in [43]. On the dataset CommonCrawl, Angel-LDA

converges after 100 iterations. We observe that MA-

LDA achieves higher log-likelihood than Angel-LDA

over all three datasets.

13 We chose batch size as follows: 16k for NYTimes, 64k for
PubMed, and 100k for CommonCrawl.

Table 2 Perplexity of NYTimes and PubMed with different
mini-batch sizes.

Dataset System 1k 4k 16k 64k
NYTimes MLlib-LDA 8797 8981 11181 16852
NYTimes MA-LDA 8967 8352 8110 8274

Dataset System 4k 16k 64k 256k
PubMed MLlib-LDA 8813 8649 9648 12083
PubMed MA-LDA 8866 8351 8180 8300

Table 3 Log-likelihood of NYTimes,PubMed and CommonCrawl.

System Iters NYTimes PubMed CommonCrawl

Angel-LDA 100 -8.28e8 -6.31e9 -4.46e9
MA-LDA 10 -7.71e8 -6.09e9 -4.21e9

5.2.2 Efficiency Comparison with MLlib

Gradient Descent. Figure 4 compares MA-SGD and

MLlib-SGD using the four public datasets on GLMs.

We trained SVMs with and without L2 regularization.

In each subfigure, the left plot shows the change in

the value of the objective function as the number of

communication steps increases, and the right plot shows

that change w.r.t. the elapsed time.

We can observe several facts. First, compared

to MLlib-SGD, MA-SGD converges much faster. As

Figure 4(h) indicates, MLlib-SGD needs 80× more

steps upon convergence on kdd12 dataset, when L2

regularization is omitted. (Note that the x-axis is in

logarithmic scale.) This demonstrates the significant

improvement of the SendModel paradigm over the

SendGradient paradigm used by MLlib — notice

that the second technique employed by MA-SGD,

i.e., AllReduce implementation, does not change the

number of communication steps. Furthermore, we note

that the overall speedup is more than linear: the

convergence of MA-SGD is 240× instead of 80× faster

if the speedup were just linear. This extra speedup

is attributed to the AllReduce technique implemented

in MA-SGD. It is a bit surprising at a first glance

— one may not expect that the improvement from

AllReduce is more significant than SendModel. This

essentially implies that the computation workload at

the driver node is expensive, regardless of whether it is

the aggregation of gradients or models.

Of course, the severity of the bottleneck depends on

the sizes of the data and the model — the larger they

are the worse the bottleneck is. For example, as shown

in Figure 4(b), MLlib-SGD needs 200× more iterations

to converge while is only 123× slower than MA-SGD.

This implies that the time spent on each iteration of

MA-SGD is longer than that of MLlib-SGD. There

are two reasons. First, the batch size of MLlib-SGD

is significantly smaller than the dataset size. Typically,



12 Yunyan Guo et al.

O
bj

ec
tiv

e 
va

lu
e

0.6

0.7

0.8

0.9

1

# Communication
0 6 12 18 24 30

MA-SGD

MLlib-SGD

10X

O
bj

ec
tiv

e 
va

lu
e

0.6

0.7

0.8

0.9

1

Time (s)
0.1 1 10 100

MA-SGD

MLlib-SGD

7X

(a) avazu, L2=0.1

O
bj

ec
tiv

e 
va

lu
e

0.2

0.4

0.6

0.8

1

# Communication
0 50 100 150 200

MA-SGD

MLlib-SGD

200X

O
bj

ec
tiv

e 
va

lu
e

0.2

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

MA-SGD
MLlib-SGD

123X

(b) avazu, L2=0

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

# Communication
0 150 300 450 600

MA-SGD

MLlib-SGD

500X O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

Time (s)
0.1 1 10 100 1000

MA-SGD

MLlib-SGD

1150X

(c) url, L2=0.1
O

bj
ec

tiv
e 

va
lu

e

0
0.2
0.4
0.6
0.8

1

# Communication
0 250 500 750 1000

MA-SGD

MLlib-SGD

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

Time (s)
0.1 10 1000

MA-SGD

MLlib-SGD

(d) url, L2=0

O
bj

ec
tiv

e 
va

lu
e

0.6

0.7

0.8

0.9

1

# Communication
0 20 40 60

MA-SGD
MLlib-SGD

13X

O
bj

ec
tiv

e 
va

lu
e

0.6

0.7

0.8

0.9

1

Time (s)
0.1 1 10 100 1000

MA-SGD

MLlib-SGD

37X

(e) kddb, L2=0.1

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

# Communication
0 250 500 750 1000

MA-SGD

MLlib-SGD

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

Time (s)
0.1 10 1000

MA-SGD

MLlib-SGD

(f) kddb, L2=0

O
bj

ec
tiv

e 
va

lu
e

0.4

0.6

0.8

1

# Communicaton
0 5 10 15 20 25

MA-SGD

MLlib-SGD

10X

O
bj

ec
tiv

e 
va

lu
e

0.4

0.6

0.8

1

Time (s)
0.1 1 10 100 1000

MA-SGD

MLlib-SGD

21X

(g) kdd12, L2=0.1

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

# Communication
0 20 40 60 80

MA-SGD

MLlib-SGD

80X

O
bj

ec
tiv

e 
va

lu
e

0
0.2
0.4
0.6
0.8

1

Time (s)
0.1 1 10 100 1000

MA-SGD

MLlib-SGD

240X

(h) kdd12, L2=0

Fig. 4 Comparison of MLlib-SGD and MA-SGD on four public datasets. The dotted line in each figure represents 0.01
accuracy loss. MA-SGD reaches the target loss in a single iteration in most cases.

the batch size is set as 1% or 0.1% of the dataset by

grid search. On the other hand, MA-SGD needs to

pass the entire dataset in each iteration. As a result,

the computation overhead per iteration of MA-SGD is

larger. Second, the model size of avazu is smaller than

that of kdd12, by 54×. Therefore, the communication

overhead on the driver in MLlib-SGD is less and the

benefit from AllReduce in MA-SGD is smaller.

Second, MLlib-SGD performs worse when the

problem becomes more ill-conditioned. As shown in

Figures 4(b), 4(d), 4(f), and 4(h), MLlib-SGD converges

123× and 200× slower than MA-SGD on the two

determined datasets avazu and kdd12, while they

cannot get to the optimal loss even after 1,000 iterations

on the two underdetermined datasets url and kddb. To

make the problem less ill-conditioned, we also report

the results with L2 regularization equal to 0.1 on these

four datasets in Figures 4(a), 4(c), 4(e), and 4(g),

respectively. We can observe that the performance gap

between MLlib-SGD and MA-SGD becomes smaller

when the training objective becomes more determined.

For example, the speedups decrease to 7× and 21× on

avazu and kdd12. Meanwhile, on url and kddb, MLlib-

SGD can now converge to the same loss as MA-SGD.

Third, distributed aggregation is more beneficial

for large models. As we can infer from comparing

Figure 4(e) with Figure 4(a), the speedup per iteration

of MA-SGD over MLlib-SGD on high dimensional
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Fig. 5 Comparison of MA-SGD, L-BFGS, and the hybrid approach (the dotted line in each plot means 0.01 accuracy loss).
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Fig. 6 Comparison of training LDA with MLlib-LDA, MLlib+MA, Angel-SVI, and MA-LDA on NYTimes and PubMed.

dataset like kddb is more significant than that on

low dimensional dataset like avazu.14 Distributed

aggregation can distribute the communication overhead

on the driver evenly to all the executors. Furthermore,

the speedup per iteration on kdd12 is slightly worse

than that on url, because the time spent on each

iteration consists of two parts, computation and

communication. The computation overhead on kdd12

is heavier as kdd12 contains more data points than url

(see Table 1).

Beyond MLlib-SGD. We further compare MA-

SGD with spark.ml, an ML library in Spark 2.3

that implements L-BFGS [28], a popular second-order

optimization technique (i.e., it utilizes both first-

order and second-order derivatives of the objective

function). It is well-known that there is a tradeoff

between first-order and second-order optimization

techniques [3]. Although both are iterative, first-

order techniques tend to be more efficient in each

iteration but may take a larger number of iterations

before converging to the optimum. Interestingly, it

is the “last mile” phenomenon that perplexes first-

order techniques: Despite that, they can quickly find

a small neighborhood containing the optimum, they

often get stuck and make slow progress in that

neighborhood. Second-order techniques overcome this

issue. Motivated by these observations, Agarwal et

14 The speedup per iteration is computed by dividing the
elapsed time (the right plot) by the number of iterations (the
left plot).

al. [3] have proposed hybrid approaches that first use

first-order techniques to reach a good neighborhood and

then switch to second-order techniques when searching

for the optimum within that neighborhood. We also

implemented a Hybrid approach that first runs model

averaging SGD for an epoch and then switches to

spark.ml.15

Figure 5 presents the results on four datasets (L2 =

0). MA-SGD outperforms L-BFGS and Hybrid across

most of the datasets. This may seem a bit contradictory

to observations made in the literature that the hybrid

approach should be better in general. We emphasize

that our results do not rebut previous results, for

the following two reasons: (1) The implementation of

L-BFGS can be further optimized, using techniques

such as ones introduced by Chen et al. [12]; (2) the

performance gap between MA-SGD and L-BFGS is

perhaps more due to the fact that MA-SGD uses

the SendModel paradigm whereas L-BFGS uses the

SendGradient paradigm.

Variational Inference. Figure 6 compares MLlib-

LDA, MLlib+MA, Angel-SVI, and MA-LDA using

two public datasets. We use the SendModel strategy

in MLlib-LDA to implement MLlib+MA. We also

implement Angel-SVI, an SVI implementation on top

of Angel, with the same algorithm of MLlib-LDA

using the AllReduce strategy. With SendGradient,

MLlib-LDA and Angel-SVI achieve the same perplexity

15 Since L-BFGS in spark.ml performs normalization, we
evaluate the models with the normalized data.
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after the same number of iterations. In addition, with

SendModel, MLlib+MA and MA-LDA also achieve the

same perplexity after the same number of iterations.

As shown in Table 2, the batch size of SendGradient is

1K for NYTimes and 16K for PubMed, with which we

achieve the lowest perplexities . On the other hand, the

batch size of the SendModel is 16K for NYTimes and

64K for PubMed, respectively. In our experiments, we

controlled each run to stop after 300 communication

steps. In each subfigure, the left plot shows the change

of the perplexity when the number of communication

steps increases, and the right plot shows that change

corresponding to the elapsed time.

We have the following two observations. First, MA-

LDA converges faster than MLlib-LDA. The left plots

in Figures 6(a) and 6(b) indicate that MLlib-LDA needs

300 communication steps to converge, whereas MA-

LDA needs no more than 40 communication steps. It

demonstrates that the SendModel paradigm in MA-

LDA significantly improves LDA training, compared

with the SendGradient paradigm in MLlib-LDA.

Second, the right plots of Figures 6(a) and 6(b) show

that the running time of MA-LDA is roughly 6× and 9×
faster than MLlib-LDA on two datasets. From Table 5,

MA-LDA processes 13× more documents for NYTimes

more documents per second for PubMed, compared to

MLlib-LDA.

Detailed Analysis of MA and AllReduce. We

further perform an in-depth analysis to understand

the individual contributions by MA and AllReduce to

the overall performance improvements. Specifically, we

compare the performances of MLlib-SGD, MLlib+MA,

and MA-SGD when running over kdd12 for a fixed

duration (i.e., 300 seconds in our experiment). Table 4

summarizes the results, and the Gantt charts have been

shown in Figure 2.

We have the following observations regarding the

effectiveness of MA:

– MLlib+MA converges to a loss of 0.459 and MLlib-

SGD converges to a loss of 0.588 in 300s. The

convergence of MLlib+MA is faster because MA

reduces the number of iterations while updating the

model more times in each iteration.

– For each iteration, the communication costs of

MLlib-SGD and MLlib+MA are similar since they

both use TreeAggregation and Broadcast.

– On the other hand, the computation time of

MLlib+MA is longer than MLlib-SGD in one single

iteration. MLlib-SGD processes a mini-batch while

MLlib+MA needs to process the whole training set

in each iteration.

Table 4 Comparison of MLlib-SGD, MLlib+MA, and MA-
SGD on kdd12 with L2=0.1 in 300s.

kdd12 MLlib-SGD MLlib+MA MA-SGD
#iterations 5 4 13
loss value 0.588 0.459 0.459

Table 5 Comparison of training LDA with MLlib-LDA,
Angel-SVI, MLlib+MA, and MA-LDA on NYTimes in 1150s
and PubMed in 1350s.

NYTimes MLlib Angel-SVI MLlib+MA MA-LDA
#iters 55 80 35 50
#docs 55K 80K 560K 800K
ppl 19859 14187 8970 8547

PubMed MLlib Angel-SVI MLlib+MA MA-LDA
#iters 30 100 60 100
#docs 0.48M 1.6M 3.84M 6.4M
ppl 28947 10818 8612 8372

Regarding the effectiveness of using AllReduce, we

further have the following observations by comparing

MLlib+MA with MA-SGD:

– Compared to MLlib+MA, MA-SGD can finish

more iterations (13 vs. 4) in 300s, since our

AllReduce implementation significantly reduces the

communication cost of each iteration.

– With MA, both MLlib+MA and MA-SGD converge

to the same target loss after one iteration, as shown

in Figure 4(g). However, MA-SGD achieves the

target loss in just 24.8s, whereas it takes 81.2s for

MLlib+MA to achieve the same loss.

On the other hand, if we only enhanced MLlib

by introducing the AllReduce strategy to aggregate

the gradients, the benefit would be rather limited. As

Table 5 shows, although the AllReduce strategy speeds

up MLlib-LDA, the perplexity values are unacceptable,

due to the fact that the SendGradient paradigm

needs hundreds of iterations to converge. However,

MA-LDA can converge faster and achieve the target

perplexity with the same running time.

In summary, both MA and AllReduce aim at

accelerating communication for ML training though

they look quite independent. MA achieves this by

redesigning the communication architecture, whereas

AllReduce improves the optimization algorithm. As a

result, MA and AllReduce should be viewed as one

holistic rather than two separate solutions.

5.2.3 Efficiency Comparison with Parameter Servers

Gradient Descent. As shown in Figure 7, we compare

the performance of MA-SGD with Petuum*-SGD and

Angel-SGD over the four datasets, with and without

L2 regularization. Here, Petuum*-SGD is a slightly
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Fig. 7 Comparison of MA-SGD and parameter servers. The dotted line in each figure represents 0.01 accuracy loss.

tweaked implementation of SGD in Petuum. The

original implementation of SGD in Petuum uses model

summation instead of model averaging, which has been

pointed out to be problematic [20, 50] — it suffers

from potential divergence. Therefore we replaced model

summation in Petuum by model averaging and call this

improved version Petuum*-SGD — we find that model

averaging is always faster than model summation based

on our empirical study. As a reference pointer, we also

present the performance of MLlib-SGD.

We have the following observations. First, Figure 7

confirms that MLlib-SGD can be significantly slower

than Petuum*-SGD and Angel-SGD, resonating

previous studies [22, 40, 49]. Both Petuum*-SGD and

Angel-SGD employ the SendModel paradigm and

therefore are understandably more efficient.

Second, as Figures 7(a), 7(b), 7(c), and 7(d)

indicate, MA-SGD can achieve comparable or better

performance as those of Petuum*-SGD and Angel-

SGD when L2 regularization vanishes. Specifically,

MA-SGD and Petuum*-SGD have similar performance

because both of them converge fast: They both

perform parallel SGD and model averaging. The

performance may be slightly different because of some

implementation issues. For example, Petuum*-SGD is

implemented in C++ while MA-SGD is implemented

using Scala. Also, Petuum*-SGD uses SSP to alleviate

potential latency from stragglers. On the other hand,

MA-SGD is faster than Angel-SGD, because Angel-

SGD cannot support small batch sizes very efficiently

due to flaws in its implementation. Roughly speaking,

Angel-SGD stores the accumulated gradients for each

batch in a separate vector. For each batch, we need

to allocate memory for the vector and collect it back.

When the batch size is small, the number of batches

inside one epoch increases because Angel workers

communicate with parameter servers every epoch, i.e.,

it needs more vectors to store the gradients every epoch.

Hence, there will be significant overhead on memory

allocation and garbage collection.

Third, MA-SGD is faster than both Petuum*-SGD

and Angel-SGD when L2 regularization is nonzero

on the four datasets, as shown in Figures 7(e),

7(f), 7(g), and 7(h). Sometimes the performance gap

between MA-SGD and parameter servers is quite

significant, for example, on the url and kddb datasets

as shown in Figures 7(f) and 7(g). Moreover, Angel-

SGD outperforms Petuum*-SGD (also significantly on

the url and kddb datasets). We note down a couple

of implementation details that potentially explain the

performance distinction. When the L2 regularization

is not zero, each communication step in Petuum*-

SGD contains only one update to the model, which

is quite expensive. In contrast, workers in Angel can

communicate with servers once per epoch (i.e., a pass

of the entire dataset) — they only need to update

their local models at every batch without pinging

the servers. As a result, each communication step

in Angel contains many more updates to the global

model, which, as we have seen several times, can

lead to much faster convergence. Meanwhile, in MA-

SGD when L2 regularization is nonzero, it actually

performs parallel SGD (i.e., with batch size 1) with a

lazy, sparse update technique designed for SGD [10],

which can boost the number of updates to the model

per communication step. The results of the model
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Fig. 8 Comparison of MA-LDA and Angel-LDA on NYTimes and PubMed, with various topic sizes.

are the same with/without lazy update. However, lazy

update can convert dense updates into sparse updates

(corresponding to the model size). Therefore, in each

communication step, we need fewer write operations of

the model with lazy update.

Variational Inference. Angel-LDA implements

LDA* [43], and its performance is much better than

Petuum-LDA and MLlib-LDA. Angel-LDA is the

state-of-the-art distributed MCMC algorithm with

parameter servers for training LDAs. We now compare

MA-LDA with Angel-LDA.

Figure 8 presents the results. The models trained

by Angel-LDA are worse than MA-LDA since they

are using two different training algorithms — MCMC

and VI. Although MCMC and VI can asymptotically

achieve similar losses in theory, empirically the model

quality of MCMC is sometimes unsatisfactory [45] [29].

Moreover, MA-LDA also converges faster than Angel-

LDA. We can understand this from two perspectives.

First, Angel-LDA processes more data than MA-LDA.

In each iteration, Angel-LDA needs to access the whole

dataset, whereas MA-LDA can calculate estimated

natural gradients from a mini-batch. As a result,

Angel-LDA needs 100 epochs to converge, whereas

MA-LDA converges after less than one epoch, as

evidenced by the left plots in each subfigure of Figure 8.

Second, although Angel-LDA runs faster with a well-

designed MCMC sampler, MA-LDA also speeds up the

calculation of natural gradients with the lazy update

and low-precision computation. Moreover, in each

iteration of MA-LDA, the SendModel paradigm offers

higher-quality topics wr for documents, which makes

the local inference more effectively and efficiently.

Another interesting observation is the gap of

running time between Angel-LDA and MA-LDA on

NYTimes is smaller than that on PubMed, whereas the

gap of model quality between Angel-LDA and MA-

LDA is larger. This is can be understood by the fact

that the average length of the documents in NYTimes

is larger than PubMed, which implies that the LDA

model on NYTimes is more complicated. Although

LDA assumes that a word can belong to multiple

topics, MCMC techniques in general focus on just one

topic [25]. Therefore, the impact on Angel-LDA due

to the difference between two datasets is small. On

the other hand, MA-LDA, as a VI algorithm, can

perform more complicated inferences with the mixture

of multiple topics to find a better model. The downside

is that it may take more time (e.g., NYTimes vs.

PubMed), though it is still faster than MCMC.

5.3 Scalability Test

Gradient Descent. To report the scalability of MA-

SGD performs when training GLMs, we compare

MA-SGD with other systems on Cluster 2 using

the Tencent dataset (i.e., the WX dataset), which is

orders of magnitude larger than the other datasets.

Apart from the comparison of convergence, we also

report the scalability results of different systems using

the WX dataset. The dataset cannot be fit into the

memory of a single machine. Therefore, we performed

scalability tests with 32, 64, and 128 machines. We

use the grid search to find the best hyperparameters

for each participating system. We do not have results

for Petuum*, because the deployment requirement of

Petuum is not satisfied on Cluster 2. Figure 9 presents

the results.

First, Figure 9(a) demonstrates that MA-

SGD converges much faster than Angel-SGD and

MLlib-SGD when using 32 machines. The loss of

Angel-SGD and MLlib-SGD is still decreasing, but

they need a much longer time. Compared to MLlib-

SGD and Angel-SGD, MA-SGD contains many more

updates to the global model in each communication

step and the communication pattern is more efficient.

Second, the scalability in terms of the time

spent on each epoch is poor for all these systems.

Figures 9(a), 9(b), 9(c), and 9(d) show the convergence

using different numbers of machines and the

corresponding speedup. As we can see, when we

increase the number of machines from 32 to 128, the
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Fig. 9 Comparison of three systems MA-SGD, MLlib-SGD,
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speedups of all these systems are poor: Angel-SGD

becomes 1.5× faster and MA-SGD becomes 1.7×
faster, and MLlib-SGD evens gets slower. This is

far below the 4× speedup one would expect if the

scalability were linear.

The poor scalability comes from two reasons:

(1) When increasing the number of machines, the

communication cost becomes more expensive and starts

to dominate, although the computation cost on each

machine decreases. We take MLlib as an example.

MLlib-SGD adopts the SendGradient paradigm and

the batch size we set is 1% of the full dataset via

grid search. When increasing the number of machines

from 32 to 128, the time cost per epoch even increases

by 0.27×. Clearly, communication overhead starts to

dominate the time cost. This is interesting — it

indicates that using more machines may not always be

a good choice.

(2) Workers in these systems need to synchronize

in every iteration and thus the elapsed time of each

iteration is determined by the slowest worker — when

the number of machines increases it is more likely to

have a really slow worker show up, especially in a

large and heterogeneous environment (e.g., Cluster 2 )

where the computational power of individual machines

exhibits a high variance. One may argue that assigning

multiple tasks to one executor (i.e., multiple waves

of tasks) can reduce the overhead brought by BSP.

However, this is not always true when it comes to
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Fig. 10 Scalability comparison of MA-LDA and MLlib-LDA.

distributed ML. We tuned the number of tasks per

executor, and the result turns out that one task

per executor is the optimal solution, due to heavy

communication overhead.

Variational Inference. For scalability comparison,

our experiments are in two folds: (1) the speedup to

achieve a specific perplexity with the increasing number

of workers, and (2) the impact on the inference quality.

Figure 10(a) shows that MA-LDA scales better than

MLlib-LDA with more workers. In MLlib-LDA, the

driver spends significant time to compute the Dirichlet

expectation of the model, which cannot be scaled

with more workers. On the other hand, although we

can alleviate the computation work on the individual

worker when more workers are involved, communication

overhead may increase to override the benefits. The

scalability of MA-LDA is much better than MLlib-LDA.

The adoption of model averaging significantly reduces

the communication overhead, whereas the distributed

aggregation strategy based on AllReduce can easily

scale out with more workers.

To see the impact on the quality of inference when

scaling out, we run MA-LDA until it converges with

different numbers of workers on NYTimes and PubMed.

Figure 10(b) presents the result. As we can see, having

more workers leads to faster convergence whereas the

final perplexity remains acceptable.

5.4 Comparison with Single-node ML systems

Given the intensive resource consumption of MA-SGD,

MA-LDA, and other distributed ML systems, it is

natural to ask whether it is even worth to consider

them. That is, would a single-node ML system perform
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equally well? Clearly, there is some tradeoff here for a

given dataset in terms of computational efficiency and

resource allocated. However, it is difficult to predict

which setting we should resort to. In the following, we

offer some insights into this tradeoff perspective using

empirical results.

Gradient Descent. We compare MA-SGD with

Vowpal Wabbit (VW) and DimmWitted (DW) [46]. We

ran MA-SGD with eight machines, each with only one

CPU core. On the other hand, we ran Vowpal Wabbit

and DimmWitted using one single machine but with

eight CPU cores. Therefore, the computation resource

in terms of CPU cores are the same in MA-SGD and

single-node ML systems, for a fair comparison. Table 6

presents the computation resource in terms of CPU

cores, as well as the time spent on computation and

communication per epoch, respectively.

MA-SGD outperforms VW in terms of time per

epoch. The rationale is the following. First, VW adopts

an online algorithm, which means that it needs to

stream input data from disk. Second, VW only uses

a single core for training.

The benefit of DimmWitted mainly comes from

intelligent uses of the hardware, in particular CPU

cores and main memory. DimmWitted also designed

special data and model replication mechanisms for

efficient training. Each CPU core is assigned to one

partition of the data (e.g., 1/8 of the dataset in

our experiments), and the model is updated by the

gradients calculated by all CPU cores in parallel. In

Table 6, we allocated enough memory in both cases so

that the datasets can be hosted in memory, and the

training time of DimmWitted is less than MA-SGD on

two small datasets.

We further compare the scalability of MA-SGD with

single-node ML systems (e.g., DimmWitted), using

various datasets with increasing sizes. Specifically, we

sample data instances from the dataset kdd12 to

generate different datasets while maintaining the same

model size. Figure 11 presents the results.

We observe that DimmWitted scales well when

dataset can reside in memory. However, when dataset

is larger than the available amount of memory, the

performance of DimmWitted degrades significantly as

the overhead of accessing data on disk offsets the CPU

overhead of computing gradients.

On the other hand, MA-SGD does not suffer from

the scalability issue observed on DimmWitted due to

insufficient memory, as long as the total combined

amount of available memory of all workers exceeds

the size of the dataset. Although one may argue that

DimmWitted could have used a more powerful machine

with memory size equal to that used by MA-SGD, such

Table 6 Comparison of MA-SGD and MA-LDA with single-
node baselines. Vowpal Wabbit(VW) and DimmWitted(DW)
run single-node SGD. Gensim-LDA runs single-node LDA.
Each cell presents the time spent on individual task. For
example, (0.89s, 0.54s) for MA-SGD on the url dataset
indicates that computation per epoch takes 0.89 second and
communication per epoch takes 0.54 second.

machine×core url kddb

MA-SGD 8× 1 (0.89s,0.54s) (5.45s,4.07s)
VW 1× 1 (7.1s, 0s) (44.3s, 0s)
DW 1× 8 (1.048s, 0s) (0.99s, 0s)

machine×core NYTimes PubMed

MA-LDA 8× 1 (683s, 136s) (460s, 115s)
Gensim 1× 8 (3836s, 0s) (6937s, 0s)

Fig. 11 Comparison between MA-SGD and DimmWitted
with increasing data sizes.

a machine would be more expensive compared to the

combined cost of all nodes used by MA-SGD (as an

example, check out Amazon EC2 on-demand instance

pricing available at [1]).

Variational Inference. Gensim [34] is a single-node

system that processes SVI-LDA with multiple cores.

To compare the performance of Gensim-LDA and MA-

LDA, we run algorithms until the models converge to

the same perplexity. In Table 6, we have decomposed

the execution time of MA-LDA into computation time

and communication time. Gensim-LDA streams the

input data from disk, so the execution time includes

both data loading time and computation time.

Regarding computation time, MA-LDA is 15.1×
faster than Gensim-LDA on PubMed and is 5.6×
faster on NYTimes when using 8 workers. For each

data point in a batch, MA-LDA calculates a gradient

and updates the local model. MA-LDA utilizes the

sparse property so that the updating cost is correlated

with the number of non-zero features in the data

point. Therefore, MA-LDA is more efficient when the

dataset is sparse, e.g., PubMed. In contrast, Gensim-

LDA updates the model only once in each iteration, and

the DirichletExpectation step is the most expensive part

of the update process. Gensim-LDA amortizes this cost

over the gradient computing of data points in a batch,

regardless of sparseness.
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Summary. The above study reveals a tradeoff between

single-node and distributed machine learning systems

facing different workloads. Briefly speaking, the single-

node machine learning library is a better option when a

single machine is able to hold the dataset; whereas the

distributed counterpart is favorable when the dataset

cannot fit in the storage space of a single machine.

6 Related Work

We discuss some other related works in addition to the

ones that have been covered in previous sections.

Distributed Stochastic Gradient Descent.

Robbins and Monro [35] proposed SGD, which has

been one of the most popular optimization algorithms

for training ML models. In practice, one usually uses

mini-batch SGD [9,14], which has been implemented in

popular libraries such as TensorFlow [2], XGBoost [11],

and PyTorch [33].

Model averaging (MA) was initially studied by

Zinkevich et al. [52], in which they proposed one-

shot SGD with model averaging for convex problems

and proved its convergence. For non-convex problems,

Zhang et al. [48] evaluated the performance of MA on

deep models.

Much work has also been done on other aspects,

such as data compression [26], data sketch [21], and

gradient quantization [23], to improve the performance

of MGD. Moreover, there is also recent work devoted

to fault tolerance in distributed MGD [5,39].

Computation and communication tradoff. To

balance the tradeoff between computation and

communication, there are several lines of work. The

first is to determine how many machines to use,

given a distributed workload. Using machines more

than enough can increase the communication cost

while using not enough machines can increase the

computation cost on each machine. Following this

line, McSherry [30] argues that distributed computing

should at least beat the single machine implementation.

Huang [19] uses the small number of machines as much

as possible to ensure the performance and efficiency.

Second, there are many proposals for reducing

communication costs by performing local computation

as much as possible. For example, Grape [15] is a

state-of-the-art distributed graph processing system,

which tries to do as much computation as possible

within a single machine and reduce the number of

iterations in distributed graph processing. As another

example, Gaia [18] is a geo-distributed machine learning

system using parameter servers. It tries to reduce

communication costs by favoring communications

within local-area networks over wide-area networks.

The parallel SGD and model averaging techniques in

MA-SGD falls into the same ballpark — it performs

as many local model updates as possible within every

single node, which significantly reduces the number

of communication steps required. There are also

some works on reducing the communication cost by

partitioning the workloads for better load balance [32,

38,41].

Parameter Server vs. AllReduce. In general,

Parameter Server can be viewed as an architecture

that manages a distributed shared memory hosting

the machine learning model and supports flexible

consistency controls for node communications. It

provides primitives such as pull and push, which

allow us to update part of the model synchronously

or asynchronously using a user-defined consistency

controller, such as BSP, SSP, and ASP. Parameter

Server has become quite popular since its invention,

due to its flexibility and superb performance. For

instance, Li et al. [27] proposed executing MGD on

parameter servers. Petuum [40] and Angel [22] are

two general-purpose ML systems using the parameter-

server architecture. There is also previous work on using

parameter servers to implement LDA. For example,

YahooLDA [4] partitions and distributes the data-level

matrix across parameter servers. LightLDA [42] uses

parameter servers to store the topic assignment matrix.

Both systems implement LDA based on MCMC.

Another popular architecture for distributed

machine learning is AllReduce [37]. It is an MPI

primitive, which first aggregates inputs from all

workers and then distribute results back (to all

workers). We do not compare with systems based on

AllReduce, because few systems use AllReduce for

training linear models. Agarwal et al. [3] combined two

MPI primitives, TreeAggregation and Broadcast, to

implement the AllReduce primitive, which is indeed

the implementation already used by MLlib. As we have

noted in Section 3, after we introduce model averaging,

the master of MLlib becomes a communication

bottleneck. As a result, we have to re-implement the

AllReduce mechanism, using the model-partitioning

techniques. The optimization strategy used by [3] is

also different from ours. Agarwal et al. [3] proposed

a hybrid optimization method for SGD and L-BFGS,

where L-BFGS is the core technique and the results

from executing (a single iteration of) model averaging

of SGD are merely used as an initial starting point for

L-BFGS. We have indeed compared our approach with

this hybrid approach (Figure 5).
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Other Machine Learning Systems on Spark.

Kaoudi [24] built a cost-based optimizer to choose

the best Gradient Descent plan for a given workload.

In our work, we use the grid search to find the

best parameters for each workload and thus do not

need the optimizer. Anderson [6] integrated MPI

into Spark and offloads the workload to an MPI

environment. They transfer the data from Spark to

MPI environment, use high-performance MPI binaries

for computation, and finally copy the result back to the

distributed file system for further usage. It is definitely

interesting and worthwhile to compare Sparks RPC-

based communication cost with that of using a native

MPI implementation of AllReduce. We believe that

using native MPI implementation can further reduce

Sparks communication cost, though it is challenging to

integrate existing MPI libraries into Spark.

7 Conclusion

In this paper, we have focused on the Spark

ecosystem and studied how to run ML workloads

more efficiently on top of Spark. With a careful

study over implementations of Spark MLlib, we

identified its performance bottlenecks. Utilizing model

averaging (MA) and other optimization techniques

enabled by MA (e.g, AllReduce-style communication

primitives for exchange of local models), we can

significantly improve MLlib without altering Spark’s

architecture. We present two specific case studies by

implementing MA-based techniques on top of MLlib’s

implementations for SGD and LDA. Throughout an

extensive experimental evaluation over both public and

industrial workloads, we have demonstrated that, the

two MA-based variants, MA-SGD and MA-LDA, not

only outperform their counterparts in MLlib, but also

perform similarly to or better than state-of-the-art

distributed ML systems that are based on parameter

servers, such as Petuum and Angel.
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